01 | analytics communication challenges; example case study; workflow, a common approach with R or Python libraries

Scott Spencer | Columbia University

welcome, course overview

Meeting your professor

Education

Doctorate Jurisprudence Honors in research and writing Focus — analysis

Master of Science Sports Management Focus — data science analytics Won, SABR analytics competition

> **Bachelor of Science** Chemical Engineering Focus — numerical methods, statistical process control

Scott Spencer Columbia University

Faculty, Lecturer, Alumnus

Consultant, Data Scientist

Professional sports

Example — Major League Baseball research and development for player performance & manager decision-making

Data for good

Example — Bayesian, generative modeling effects of climate change on perceived expectations of property values

Innovation

Example — whether invented attributes of an edible oil previously existed or was made or sold by competitor

Teaching and Research

Developing generative models

Building Bayesian, generative models to enable decision-making in complex fields such as sports performance.

Communicating uncertainty

Writing monograph on quantitative persuasion amid uncertainty. Developing R packages to tie human perception to graphical representation of data.

Contributing open-source software

Contribute to interfaces to Stan, a probabilistic programming language.

Meeting your Associate

Education

Doctorate Education

Master of Science Media Studies

Bachelor of Fine Arts Design

Background & Interests

Born: Suwon, Korea

Languages: English, Korean, Japanese

Hobbies: Founder of the NYC Ramen Enthusiasts, Kickboxing, Travel

Laura Scherling **Columbia University**

Director, Associate Faculty SPS & TC laurascherling.info Instagram: <u>laura.skierling</u>

Industry Experience

Founder GreenspaceNYC

Senior Interactive Designer Marketing @ The New School

Designer & Developer Marketing @ Housing Works

Designer & Developer Motion Graphics, Advertising @ Guava Studios

Notable clients HBO, NHL, Ogilvy, Stanford Medicine, Sesame Workshop, EWG, PBS, Barnes & Noble

Research & Publications

Areas of research

Management, Marketing Analytics, Ed Tech and Higher Ed Analytics, Information Design, Visual Design, Digital Transformation, Sustainability

Publications

Ethics in Design (Bloomsbury, 2020); Digital Transformation in Design (under review, Bloomsbury 2022, expected)

Research publications for:

Brooking Metro, Design Observer, Urban Activist, Design and Culture, Spark Journal, Interiors: Design/Architecture/ Culture, Futures Worth Preserving Cultural Constructions of Nostalgia and Sustainability

Laura Scherling, tools used in example projects

javascript

python

Excel

In Design

Illustrator

Media in small and large scale for mapping and infographics projects

photography

scott.spencer@columbia.edu

introductions, weekly discussion and office hours

weekly, in-person discussion

Class meets Mondays 6:10-8PM Riverside Church, Assembly Hall

office hours

Professor Scott Spencer <u>Click to schedule appointment</u>

Associate Laura Scherling <u>Click to schedule appointment</u>

introductions, learning as a team — introductions through group resumes

In groups of six, appoint one speaker to summarize: tools you (all) have used for data visualization, previous education majors, relevant (work) experience, and hobbies.

Do this as quickly as possible. Several groups will have the opportunity to share out in one minute elevator pitches.

analytics communication challenges and course overview

challenges, communication gaps

business +

data translator

challenges, bridging the gaps with data translators, qualities needed

project management

data analysis

subject expertise

storytelling

data wrangling

design

course overview, learn to drive change using data visuals and narrative

course overview, learn to drive change using data visuals and narrative

course overview, course deliverables and structure

Individual Work

For learning data visualization and written narrative techniques

Sept 30	Oct 14	Oct 28	Nov 18	Nov 18	Dec 11	
Homework 1 graphics	Homework 2 graphics	Homework 3 writing	Homework 4 graphics	Proposal	Interactive Communication	Multimodal commur
10%	10%	10%	10%	15%	20%	15%
				Participation 10%		

Group work

For building graphics and narrative into interactive communications

introducing an example case study

example case study, let's begin a project (indeed, any data analytics project) with questions

initial questions What **problem** is to be solved?

Is the problem **important**?

Could an answer have **impact**?

Do data have a role in solving the problem?

Are the right data available?

In what **contexts** may the data be generated?

Is the organization ready to tackle the problem and take actions from insights?

example case study, exploring changes in usage of Citi Bike, a bike share in New York City

🙊 scott.spencer@columbia.edu

example case study, docking station outside our classroom and related information on iPhone app

🙊 scott.spencer@columbia.edu

example case study, rebalancing as a challenge

Rebalancing is one of the biggest challenges of any bike share system, especially in ... New York where residents don't all work a traditional 9-5 schedule, and ... people work in a variety of other neighborhoods.

— Simmons, Dani. Citi Bike spokeswoman. 2016

example case study, changing conditions, how might the pandemic affect *current* rebalancing efforts?

For New York City to hit its climate goals, it will be critical for more people to use public transit, bikes or walking to commute than before the pandemic. When offices and businesses begin to reopen, more flexible remote options for workers could also be friendly for the planet.

Transit experts also say that existing tools and policies could encourage commuters to embrace low-emissions modes of transportation. Bike shares and bike sales are experiencing a boom in the city, which could help reduce transit emissions, but cycling advocates say continued investment in bike paths and protected lanes will be key for keeping people on their bikes as commuting returns to its postpandemic normal.

— Penney, Veronica. New York Times. 2021

example case study, Citi Bike's approaches to rebalancing

Bike Angels

Valet schedule

Bike trains

Motorized vehicles

— Citi Bike. "How We're Rebalancing the Citi Bike System." Citi Bike NYC (blog), August 14, 2020. https://www.citibikenyc.com/blog/rebalancing-the-citi-bike-system.

example case study, think about the tangible world, then how relevant events may be measured and recorded

Identifying events and user behavior

What events may be correlated with or cause empty or full bike docking stations?

What potential user behaviors or preferences may lead to these events?

From what **analogous** things could we draw comparisons to provide context?

Measurements of events and behaviors

How may these events and behaviors have been measured and recorded?

What **data are available**? Where? What form?

May these data be sufficient to find insights through analysis, useful for decisions and goals?

data, a basic taxonomy

data for analytics projects, defining datum and data set

DATUM an abstraction of **a** real-world entity (person, object, or event). The terms *variable*, *feature*, and *attribute* are often used interchangeably to denote an individual abstraction. Data are the plural of datum.

DATA SET | consists of the data relating to a collection of entities, with each entity described in terms of a set of attributes. In its most basic form, a data set is organized in an $n \cdot m$ data matrix called the analytics record, where *n* is the number of entities (rows) and *m* is the number of attributes (columns).

data for analytics projects, data types

NOMINAL types are *names* for categories, classes, or states of things.

ORDINAL types are similar to nominal types, except it is possible to rank or order categories of an ordinal type.

NUMERIC types are *measurable* quantities we can represent using integer or real values. Numeric types can be measured on an *interval* scale or a *ratio* scale.

data for analytics projects, structured and unstructured data

STRUCTURED DATA | data that can be stored in a table, and every instance in the table has the same structure (i.e., set of attributes).

UNSTRUCTURED DATA | data where each instance in the data set may have its own internal structure, and this structure is not necessarily the same in every instance.

example case study, research and explore possible sources of available data

Examples of publicly available data sources

Bike and **dock**: data are recorded of each bike unlocked and docked, along with remaining dock capacities at the locations, dates, and times of each event: <u>https://www.citibikenyc.com/system-data</u>

Taxi pickup and drop-off locations and times: <u>https://</u> www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Subway lines entrance/exit locations: <u>https://</u> data.cityofnewyork.us/Transportation/Subway-Stations/arq3-7z49

MTA usage data (and change since coronavirus): https://new.mta.info/coronavirus/ridership

Historical weather: National Weather Service. API Web Service. <u>https://www.weather.gov/documentation/</u> services-web-api; Yip, Stan. "Weatherr: Tools for Handling and Scraping Instant Weather Forecast Feeds." Manual, 2020. https://CRAN.R-project.org/ package=weatherr.

Geography (elevation): USGS. *Elevation Point Query Service*. <u>https://ned.usgs.gov/epqs/;</u> Hollister, Jeffrey, et al. "Elevatr: Access Elevation Data from Various APIs." Manual, 2021. https://doi.org/10.5281/zenodo.5119662.

Traffic data and more: <u>http://www.nyc.gov/html/dot/</u> html/about/datafeeds.shtml#realtime

Twitter: <u>https://twitter.com/CitiBikeNYC;</u> Gentry, Jeff. "TwitteR: R Based Twitter Client." Manual, 2015. https://CRAN.R-project.org/package=twitteR.

workflow, software tools for data exploration and analysis

explore & analyze, a basic, general workflow

— Adapted from Wickham, Hadley, and Garrett Grolemund. *R for Data Science*. <u>https://r4ds.had.co.nz</u>

software tools, demonstrations in R, can be mimicked in Python

R / tidyverse

Python / datar & plotnine

© 2021 Scott Spencer / 💭 https://ssp3nc3r.github.io

🙊 scott.spencer@columbia.edu

software tools, demonstrations in R, can be mimicked in Python — loading libraries

R / tidyverse

library(package_name)

Python / datar & plotnine

from package_name import *

software tools, demonstrations in R, can be mimicked in Python — importing data

R / tidyverse

df_r <- read_csv("filename.csv")</pre>

Python / datar & plotnine

df_py = pd.read_csv("filename.csv")

software tools, demonstrations in R, can be mimicked in Python — data structures

R

1; 1L; TRUE; "foo"	single-element vector	4
c(1.0, 2.0, 3.0); c(1L, 2L, 3L)	multi-element vector	∢
list(1L, TRUE, "foo")	list of multiple types	∢
<pre>list(a = 1L, b = TRUE, c = "foo")</pre>	named list	∢
<pre>matrix(c(1, 2, 3, 4), nrow = 2, ncol = 2)</pre>	matrix / array	◀
<pre>data.frame(x = 1:3, y = c("a", "b", "c"))</pre>	data frame	◀
function(x) x + 1	function	◀
NULL; TRUE; FALSE	NULL, TRUE, FALSE	◀

Python

◀	scalar
◀	list
◀	tuple
◀	dict
◀	numpy ndarray
◀	pandas DataFrame
◀	python function
◀	None, True, False

software tools, demonstrations in R, can be mimicked in Python — how functions work

R / tidyverse

basic function returned_object <- function_name(parameter1, parameter2)</pre>

object-oriented member function final_object <- initial_object\$member_function()</pre>

> 1. **The name**. A user can run the function by typing the name followed by parentheses, e.g., roll2().

2. **The body**. R will run this code whenever a user calls the function. function.

replace = TRUE)sum(dice)

Grolemund, Garrett. *Hands-On Programming with R*. https://rstudio-education.github.io/hopr/

Python / datar & plotnine

```
#basic function
returned_object = function_name(parameter1, parameter2)
# object-oriented member function
final_object = initial_object.member_function()
```


software tools, demonstrations in R, can be mimicked in Python — applying successive functions to data frame

R / tidyverse pipe operator %>%

final_object <- initial_object %>% f() %>% g() %>% h()

Python / datar & plotnine pipe operator >>

final_object = initial_object >> \ f() >> \ g() >> \ h()

software tools, demonstrations in R, can be mimicked in Python — Python library ports of R's dplyr & ggplot2 Python / datar & plotnine

R / tidyverse

shows data frame variables & types	gli
creates or modifies a variable	mut
specifies variables (columns) to keep	sel
renames variables	ren
specifies observations (rows) to keep	fil
specifies ordering of observations	arr
specifies grouping of observations	gro
specifies some summary of the data	sum
convert form wide to long format	piv
convert form long to wide format	piv
map data to graphical elements	ggp

limpse	◀	info
utate	◀	mutate
elect	◀	select
ename	◀	rename
ilter	◀	filter
rrange	◀	arrange
roup_by	◀	group_by
ummarise	◀	summarise
ivot_longer	◀	pivot_longer
ivot_wider	◀	pivot_wider
gplot	◀	ggplot

example case study, exploring data with software

example case study, exploration — loading libraries

R / tidyverse

library(tidyverse)

Python / datar & plotnine

import pandas as pd from plotnine import * from datar.all import * from pipda import options options.assume_all_piping = True

example case study, exploration — importing

R / tidyverse

df_r <- read_csv("data/201901-citibike-tripdata.csv")</pre>

df_r %>% glimpse()

Rows: 967,287 Columns: 15 \$ tripduration <dbl> 320, 316, 591, 2719, 303, 535, 280... \$ starttime <dttm> 2019-01-01 00:01:47, 2019-01-01 0... \$ stoptime <dttm> 2019-01-01 00:07:07, 2019-01-01 0... <dbl> 3160, 519, 3171, 504, 229, 3630, 3... \$ `start station id` <chr> "Central Park West & W 76 St", "Pe... \$ `start station name` <dbl> 40.77897, 40.75187, 40.78525, 40.7... \$ `start station latitude` \$ `start station longitude` <dbl> -73.97375, -73.97771, -73.97667, -... <dbl> 3283, 518, 3154, 3709, 503, 3529, ... \$ `end station id` \$ `end station name` <chr> "W 89 St & Columbus Ave", "E 39 St... <dbl> 40.78822, 40.74780, 40.77314, 40.7... \$ `end station latitude` <dbl> -73.97042, -73.97344, -73.95856, -... \$ `end station longitude` \$ bikeid <dbl> 15839, 32723, 27451, 21579, 35379,... <chr> "Subscriber", "Subscriber", "Subsc... \$ usertype <dbl> 1971, 1964, 1987, 1990, 1979, 1989... \$ `birth year` \$ gender <dbl> 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2...

Python / datar & plotnine

df_py = pd.read_csv("data/201901-citibike-tripdata.csv") df_py.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 967287 entries, 0 to 967286 Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype			
0	tripduration	967287 non-null	int64			
1	starttime	967287 non-null	object			
2	stoptime	967287 non-null	object			
3	start station id	967269 non-null	float64			
4	start station name	967269 non-null	object			
5	start station latitude	967287 non-null	float64			
6	start station longitude	967287 non-null	float64			
7	end station id	967269 non-null	float64			
8	end station name	967269 non-null	object			
9	end station latitude	967287 non-null	float64			
10	end station longitude	967287 non-null	float64			
11	bikeid	967287 non-null	int64			
12	usertype	967287 non-null	object			
13	birth year	967287 non-null	int64			
14	gender	967287 non-null	int64			
dtype	es: float64(6), int64(4),	object(5)				
memoi	memory usage: 110.7+ MB					

© 2021 Scott Spencer / 💭 https://ssp3nc3r.github.io scott.spencer@columbia.edu

example case study, exploration — tidying and transforming

R / tidyverse

```
df_r <- df_r %>% rename_all(function(x) gsub(" ", "_", x))
df_r <- df_r %>%
  filter(!is.na(start_station_id)) %>%
  arrange(starttime) %>%
  group_by(bikeid) %>%
  mutate(
    rebalanced =
      if_else(row_number() > 1 &
             start_station_id != lag(end_station_id),
             TRUE, FALSE)
  ) %>%
  ungroup()
df_r %>% pull(rebalanced) %>% table()
```

Python / datar & plotnine

```
df_py = df_py.rename(lambda x: x.replace(' ', '_'), axis = 1)
df_py = df_py >> \
 filter( f.start_station_id.notnull() ) >> \
  arrange(f.starttime) >> \
  group_by(f.bikeid) >> \
 mutate(
    rebalanced =
     if_else((row_number() > 1) &
              (f.start_station_id != lag(f.end_station_id)),
              True, False)
  ) >> \
  ungroup()
df_py.rebalanced.value_counts()
```


example case study, exploration — visualizing

R / tidyverse

```
ggplot(data = df_r) +
  geom_bar(
    mapping = aes(x = rebalanced),
    stat = 'count'
```


Python / datar & plotnine

```
ggplot(data = df_py) + \
geom_bar(
    mapping = aes(x = 'rebalanced'),
   stat = 'count'
```


later in the course, example of an interactive information graphic with our Citi Bike case study

click for interactive version

© 2021 Scott Spencer / 🌎 https://ssp3nc3r.github.io

scott.spencer@columbia.edu

later in the course, example combining tools to create part of an *interactive communication* ...

Explorable differences between umpire calls and modeled probabilities of strikes

Below, we can explore the percentage difference between the umpire calls and modeled probabilities of those calls, with corresponding video footage. Circles O in the top row represent called pitches (ball, strike) and lightness of the color represent how close ⁸ our modeled strike probability was to the actual call {0, 1} for each handedness (throw-stand) matchup {LL,LR,RL,RR}.

Circles O in the bottom row represent the corresponding estimate of runs saved from that variation.

Hovering a pointer over a circle O links O-O pitches in top and bottom rows, and provides more details of the play in a tooltip. Clicking a pitch loads its game video:

🗓 📕 🍜 0:00 — 🗕

Of note, the graphics below only show pitches where the differences of called ball or strike from modeled probatility of strikes exceed ± 0.10.

next deliverable, homework one

Individual Work

For learning data visualization and written narrative techniques

Sept 30	Oct 14	Oct 28	Nov 18	Nov 18	Dec 11	
Homework 1 graphics	Homework 2 graphics	Homework 3 writing	Homework 4 graphics	Proposal	Interactive Communication	Multimodal commun
10%	10%	10%	10%	15%	20%	15%
				Participation 10%		

For building graphics and narrative

ication	

resources

References

Brady, Chris, Mike Forde, and Simon Chadwick. "Why Your Company Needs Data Translator MIT Sloan Management Review, March 2017, 1–6.

Berinato, Scott. "Data Science & the Art of Persuasion." Harvard Business Review, December 2018, 1–13.

Citi Bike. "How We're Rebalancing the Citi Bike System." Citi Bike NYC (blog), August 14, 2020. https://www.citibikenyc.com/blog/rebalancing-the-citi-bike-system.

Friedman, Matthew. "Citi Bike Racks Continue to Go Empty Just When Upper West Siders Need Them." News. West Side Rag (blog), August 19, 2017. https://www.westsiderag.com/2017/08/19/ citi-bike-racks-continue-to-go-empty-just-when-upper-west-siders-need-them.

Kibirige, Hassan, et al. *Plotnine: A Grammar of Graphics for Python* (version v0.8.0), Last accessed 2021 September 18. <u>https://plotnine.readthedocs.io/en/stable/</u>.

Kelleher, John D, and Brendan Tierney. "What Are Data, and What Is a Data Set?" In Data Science. MIT Press, 2018.

Mailund, Thomas. *Beginning Data Science in R.* Apress, 2017.

ors."	Maynard-Atem, Louise, and Ben Ludford. "The Rise of the Data Translator." Impact 202
	(January 2, 2020): 12–14. <u>https://doi.org/10.1080/2058802X.2020.1735794</u> .

Penney, Veronica. How Coronavirus Has Changed New York City Transit, in One Chart. New York Times, March 8, 2021. <u>https://www.nytimes.com/interactive/2021/03/08/climate/nyc-</u> transit-covid.html

Spencer, Scott. "Analytics Communication Scopes" and "Audiences and Challenges." In Data in *Wonderland*. 2021. <u>https://ssp3nc3r.github.io/data_in_wonderland</u>.

Spencer, Scott. "Similarities between R and Python for data analysis." Last updated 2020 Feb. 2. https://ssp3nc3r.github.io/publications/Spencer-2020-r-python-similarities.html

Wang, P.W. datar: port of dplyr and other related R packages in python, using pipda. (version 0.5.1), Last Accessed 2021 September 18. <u>https://pwwang.github.io/datar/</u>.

Wickham, Hadley, and Garrett Grolemund. *R for Data Science*. <u>https://r4ds.had.co.nz</u>

Wickham, Hadley, Danielle Navarro, and Thomas Lin Pedersen. ggplot2: Elegant Graphics for *Data Analysis*. Third Edition (in progress). <u>https://ggplot2-book.org</u>

supplemental

R / tidyverse saving each step Temp1 <- f(initial_object)</pre> Temp2 <- g(Temp1)</pre> final_object <- b(Temp2)</pre>

pipe operator %>%

final_object <-</pre> initial_object %>% f() %>% g() %>% h()

pipe operator >> from pipda

final_object = initial_object >> \ f() >> \ g() >> \ h()

explore & analyze, similarities between software languages — functions operating on data frames

R / tidyverse

shows data frame variables & types	
creates or modifies a variable	I
specifies variables (columns) to keep	
renames variables	
specifies observations (rows) to keep	
specifies ordering of observations	ļ
specifies grouping of observations	
specifies some summary of the data	
convert form wide to long format	
convert form long to wide format	

glimpse		info
mutate	◀	assign
select	◀	filter
rename		rename
filter		query
arrange	◀	sort_values
group_ by	◀	groupby
summarise	◀	agg
pivot_longer	◀	melt
pivot_wider	◀	pivot

Python / pandas

explore & analyze, software languages — tutorials and cheat sheets online

R / tidyverse

Python / pandas

scott.spencer@columbia.edu