Storytelling with data

02 | purpose of visuals; coordinate systems; data encodings; the grammar of graphics; practice
next deliverable, homework one

Individual Work

For learning data visualization and written narrative techniques

course overview, learn to drive change using data visuals and narrative

Why show data graphically?

why data graphics, one value or strength of visualization

While text can use different types of content structures, an abstract visualization just presents relationships between data points.

Thus, a single bar, map symbol or shape does not convey information. It only becomes meaningful by its relationship with other elements in the image-in other words, it is polysemic: A data graphic acquires its meaning from comparison.

why data graphics, graphic of a datum - effective? Conveys meaning?

$\begin{array}{lllll}\$ 2,000 & \$ 4,000 & \$ 6,000 & \$ 8,000 & \$ 10,000\end{array} \$ 12,000$

Fig. 3. Major categories of expenditures, descending dollar value, 2002 U.S. Consumer Expenditure Survey

While text can use different types of content structures, an abstract visualization just presents relationships between data points.

Thus, a single bar, map symbol or shape does not convey information. It only becomes meaningful by its relationship with other elements in the image-in other words, it is polysemic: A data graphic acquires its meaning from comparison.

why data graphics, graphic comparing data- more effective? Conveys meaning?

Fig. 3. Major categories of expenditures, descending dollar value, 2002 U.S. Consumer Expenditure Survey
While text can use different types of content structures, an abstract visualization just presents relationships between data points.

Thus, a single bar, map symbol or shape does not convey information. It only becomes meaningful by its relationship with other elements in the image-in other words, it is polysemic: A data graphic acquires its meaning from comparison.

- Koponen \& Hildén, The Data Visualization Handbook
why data graphics, example data from Anscombe

1		2		3		4	
x	y	x	y	x	,	x	y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.50
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

Are the 4 data sets the same?
why data graphics, example data from Anscombe

1		2		3		4	
x	y	x	y	x	y	x	y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.50
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

Are the 4 data sets the same?

summary statistics

	1		2		3		4	
	X	y	X	y	x	y	X	y
mean	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
sd	3.32	2.03	3.32	2.03	3.32	2.03	3.32	2.03

why data graphics, example data from Anscombe

1		2		3		4	
x	y	x	y	x	y	x	y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.50
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

Are the 4 data sets the same?
summary statistics and regressions ($\mathbf{y} \sim \mathbf{1}+\mathbf{x}$)

	1		2		3		4	
	X	y	x	y	X	y	x	y
mean	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
sd	3.32	2.03	3.32	2.03	3.32	2.03	3.32	2.03

Parameter	Mean	Std Err	t -val	p -val
Dataset 1				
(Intercept)	3.000	1.125	2.667	0.026
x	0.500	0.118	4.241	0.002
Dataset 2				
(Intercept)	3.001	1.125	2.667	0.026
x	0.500	0.118	4.239	0.002
Dataset 3				
(Intercept)	3.002	1.124	2.670	0.026
x	0.500	0.118	4.239	0.002
Dataset 4				
(Intercept)	3.002	1.124	2.671	0.026
x	0.500	0.118	4.243	0.002

why data graphics, example data from Anscombe

1		2		3		4	
x	y	x	y	X	y	x	y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.50
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

With graphics we can use our natural ability to see patterns through visual comparison

graphs - coordinate systems and scales
coordinates and scales, two-dimensional Cartesian coordinates - \mathbf{x} and \mathbf{y} axes run orthogonally to each other, and data values placed along linear axes

cartesian coordinates

polar coordinates

coordinates and scales, another example, projecting spherical surface to a plane

Cartesian coordinates, $\mathrm{x}=$ longitude and $\mathrm{y}=$ latitude

Mercator coordinates, $\mathrm{x}=$ longitude and $\mathrm{y}=$ latitude

coordinates and scalles, as with choosing coordinates, we can transform scales for data or axes for better understanding
linear scales on cartesian coordinates

data or scale transformations, examples
$4 \begin{array}{cc}4 & 5 \\ & \text { linear data, linear scale }\end{array}$

log-transformed data, linear scale
linear data, log scale

[^0]
Bending the Curve

Logarithmic scales can emphasize the rate of change in a way that linear scales do not. Italy seems to be slowing the coronavirus infection rate, while the number of cases in the United States continues to double every few days.

data encodings for visual comparison

data encodings, geometry of graphical elements - point

data encodings, geometry of graphical elements - line

data encodings, geometry of graphical elements - surface

data encodings, geometry of graphical elements - volume

data encodings, visual channels for encoding data

the grammar of graphics

the grammar of graphics, grammar - describes the form of relationships between [things]

GRAMMAR: 1.a. That department of the study of a [thing] which deals with its inflectional forms or other means of indicating the relations of [parts in things], and with the rules for employing these in accordance with established usage...
but chart typologies can help us learn and discuss encodings

"We often call graphics charts. There are pie charts, bar charts, line charts, and so on. [We should] shun chart typologies. Charts are usually instances of much more general objects.

Once we understand that a pie is a divided bar in polar coordinates, we can construct other polar graphics that are less well known. We will also come to realize why a histogram is not a bar chart and why many other graphics that look similar nevertheless have different grammars.... Elegant design requires us to think about a theory of graphics, not charts."

- Leland Wilkinson, The Grammar of Graphics, Second.

Information Graphics

A Comprehensive
Illustrated Reference

Visual Tools for Analyzing, Managing, and Communicating Robert L. Harris

the grammar of graphics, statistical graphic specifications are expressed in six statements

DATA : a set of data operations that create variables from datasets

Transformations : variable transformations (e.g., rank, log, square root)

SCALES : scale transformations (e.g., linear, log, square root)

COORDINATES : a coordinate system (e.g., cartesian, polar)

ELements : graphs (e.g., points, lines, areas) and their aesthetic attributes (e.g., position, size, hue, saturation, luminance, opacity, orientation, shape)

GuIDES : one or more guides (axes, legends, etc.)

the grammar of graphics, implementation example - ggplot2 (grammar of graphics)

```
    # load grammar of graphics
    library(ggplot2)
WILKINSON'S GRAMMAR
    Mata
    # functions for data ink
    ggplot(data = <data>,
    mapping = aes(<aesthetic> = <variable>,
    = <...>) +
    geom_<type>(data = <...>, mapping = aes(<\ldots>),<\ldots>) +
    scale_<mapping>_<type>(<...>) +
    coord_<type>(<...>) +
    facet_<type>(<\ldots.>) +
    # functions for non-data ink
            GuIDES labs(<\ldots.>) +
            theme(<\ldots> = < ...>) +
            annotate(<...>) +
```


the grammar of graphics, implementation example - ggplot2 (grammar of graphics)

```
# load grammar of graphics
library(ggplot2)
```

WILKINSON'S GRAMMAR
DATA
Transformations
Elements (with data)
SCALES \& GUIDES
COORDINATES
\# functions for data ink

BERTIN'S VARIABLES + x, y, z, size, color, fill, alpha, angle, shape, group ... and more, depends on the geometry used.

the grammar of graphics, layering - order of elements determines position towards reader and when overlapping, occlude

```
ggplot() +
    theme_void() +
scale_x_continuous(limits = c(-5, 5)) +
scale_y_continuous(limits = c(-5, 5)) +
geom_point(
        mapping = aes(
            x = 0,
            y = 0),
        size = 50
        color = "orange") +
geom_point(
    mapping = aes(
            x = 1,
            y = 1),
        size = 50
        color = "dodgerblue")
```

```
ggplot() +
    theme_void() +
    scale_x_continuous(limits = c(-5, 5)) +
    scale_y_continuous(limits = c(-5, 5)) +
    geom_point(
        mapping = aes(
            x = 1,
            y = 1),
        size = 50,
        color = "dodgerblue") +
    geom_point(
        mapping = aes(
            x = 0,
            y = 0),
        size = 50,
        color = "orange")
```


the grammar of graphics, elements in layers - example

encodings and grammar - exploratory practice with our Citi Bike case study
data encodings, visual channels for encoding data

arriving - leaving \mid hour $>$ total docks				
0	3	6	9	12

VARIABLES OF THE IMAGE

$\mathbf{X Y} \mid 2$ dimensions of the plane

DIFFERENTIAL VARIABLES

Color

VARIABLES OF THE IMAGE

$\mathbf{X Y |} \mid 2$ dimensions of the plane

DIFFERENTIAL VARIABLES

Color

LINE

usertype

Customer
Subscriber

VARIABLES OF THE IMAGE

$\mathbf{X Y |} \mid 2$ dimensions of the plane

DIFFERENTIAL VARIABLES

Color

Orientation

LINE

AREA

class exercises

exercise, identify data

encodings in visual channels

Please approve the hire of 2 FTEs

to backfill those who quit in the past year
Ticket volume over time

Data source: XYZ Dashboard, as of 12/31/2014 | A detailed analysis on tickets processed per person and time to resolve issues was undertaken to inform this request and can be provided if needed.

[^1]exercise, identify data

encodings in visual channels

visual elements

Schleuss, Jon, and Rong-Cong Lin II. 2013 "California Crime 2013." Los Angeles Times.

a graphics study - deconstructing Lupi's
Nobels, no degrees, identifying typologies

a graphics study through deconstruction and typology

If at first, this seems complex, Lupi's graphic is just organized groups of layered data encodings. These even follow typologies commonly used in business communications. We can make something complex like this by creating component parts and carefully arranging them.

Don't be intimidated! - Just methodically experiment with encodings for each data type, then organize them.

Of note: in Lupi's organization, she aligns graphics by common axis scales. We'll discuss this idea more later.

decomposition \& topology study,

 identify data encodings in visual channels

 ssp3nc3r.github.io/post/approximating-the-
decomposition \& topology study, a scatterplot and line charts (aka connected scatterplot) ggplot(filter(df, Ca
scale_color_manual
scale_color_manual(
values $=$ category_colors
breaks = category_names)' +
scale_alpha_manual(
scale_alpha_manual
values $=c(1,0)$
breaks $=c($ FFemale", "Male") $)+$
scale_x_continuous
breāk $=\operatorname{seq}(1901,2016$, by $=30)$,
minor breaks $=\operatorname{seq}(1901,2016$, by $=10)$,
position = "top")

geom_hline(
$\begin{array}{l}\text { mapping }=\text { aes } \\ \text { yintercept }= \\ \text { mean }(A g e, ~ n a . r m ~\end{array}=$ TRUE) $)$,
lwd $=0.2$,
linetype = "dashed") +
geom_hline(
mapping $=$ aes $($
yintercept $=$ cat ${ }^{\text {color }}=$ Cates
color = Category) $)_{+}^{+}$
geom_line
mapping $=$ aes $($
$x=$ Year,
$y=$ Age,
$\mathrm{y}=\mathrm{Age}$,
color $=$ (
color $=$ Category $), ~$
lwd $=0.2)+$
geom_point
mapping = aes
$x=$ Year,
$\begin{aligned} & \mathrm{y}=\text { Age, } \\ & \text { color }\end{aligned}=$ Category
color $=$ Categor
size $=1.5, ~$
alpha $=0.5)+$
geom_point
mapping = aes
$x=Y e a r$,
$y=A g e$,
alpha ='Sex),
color $=$ "pink
shape $=21$,
size
decomposition \& topology study, multiples or facets of scatterplots and line charts

decomposition \& topology study, multiples or facets of bar charts

decomposition \& topology study, multiples or facets of stacked bar charts

ggplot(df)
 facet_wrap(

era~.,
nrow = 1) +
scale_fill_manual(
values = category colors, breaks = category_names) +

geom_bar(

mapping = aes (
mapping $=$
$x=n$,
$y=$ Birth.City,
fill = Category),
stat = 'identity',
width $=0.2$) +
geom_text(
mapping = aes(
$x=n_{n} e r a_{-} c i t y+2$,
$\mathrm{x}=\mathrm{B}$ Birth.City,
label = n_era_city), stat = 'identity', width = 0.2)

Scott Spencer / ()

961

1991

0
decomposition \& topology study, a sankey chart
$x=x$,
$i d=i d$
id = id
value $=$ n)) +
scale_fill_manual(
values = category colors,
breaks = category names) +
geom_parallel_sets
mapping = aes(
fill = Category)
alpha $=0.6$
sep $=0.1$) +
geom_parallel_sets_axes(axis.width = 0.01
fill = "gray80",
but chart typologies can help us learn and discuss encodings

"We often call graphics charts. There are pie charts, bar charts, line charts, and so on. [We should] shun chart typologies. Charts are usually instances of much more general objects.

Once we understand that a pie is a divided bar in polar coordinates, we can construct other polar graphics that are less well known. We will also come to realize why a histogram is not a bar chart and why many other graphics that look similar nevertheless have different grammars.... Elegant design requires us to think about a theory of graphics, not charts."

- Leland Wilkinson, The Grammar of Graphics, Second.

Information Graphics

A Comprehensive
Illustrated Reference

Visual Tools for Analyzing, Managing, and Communicating Robert L. Harris
resources

References

Spencer, Scott."Visual, Sec. 2-2.1.3" In Data in Wonderland. 2021. https:// ssp3nc3r.github.io/data in wonderland.

Anscombe, F J. "Graphs in Statistical Analysis". The American Statistician 27, no. 1 (February 1973): 17-21.

Bertin, Jacques. Semiology of Graphics: Diagrams Networks Maps. Redlands: ESRI Press, 2010.

Harris, Robert L. Information Graphics: A Comprehensive Illustrated Reference. New York: Oxford University Press, 1999.

Koponen, Juuso, and Jonatan Hildén. Data Visualization Handbook. First. Finland: Aalto Art Books, 2019.

Leborg, Christian. Visual Grammar. Princeton Architectural Press, 2004.
Spencer, Scott. "Approximating the Components of Lupi's Nobels, No Degrees." Blog, March 15, 2019. https://ssp3nc3r.github.io/post/approximating-the-components-of-lupi-s-nobel-no-degrees/.

Spencer, Scott. "Demonstration of Layers in Graphics." Publications, March 6, 2020.
https://ssp3nc3r.github.io/publications/Spencer-2020-Demonstration-of-layers-ingraphics.pdf

Tufte, Edward R. The Visual Display of Quantitative Information. Second. Graphics Press, 2001.
———. Visual Explanations. Images and Quantities, Evidence and Narrative. Graphics Press, 1997.

Wickham, Hadley. "A Layered Grammar of Graphics." Journal of Computational and Graphical Statistics 19, no. 1 (January 2010): 3-28.

Wickham, Hadley, Danielle Navarro, and Thomas Lin. Ggplot2: Elegant Graphics for Data Analysis. Third. Springer, 2021. https://ggplot2-book.org/.

Wilke, C. Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. First edition. Sebastopol, CA: O'Reilly Media, 2019.

Wilkinson, Leland. The Grammar of Graphics. Second. Springer, 2005.

[^0]: $\begin{array}{lccc}\bullet & \bullet \\ \text { linear data, } & \text { equare-root scale }\end{array}$

[^1]: - Knaflic, Cole Nussbaumer. Storytelling with Data. A Data

 Visualization Guide for Business Professionals. Wiley, 2015.

