## Storytelling with data

06 | Numeracy in narratives - composition and layout

## course overview, learn to drive change using data visuals and narrative

No one ever made a decision because of a number. They need a story. behavioral economist, and author


## general course deliverable timeline

## Individual Work

Group work
For building graphics and narrative into interactive communications


## next deliverable, homework three

## Individual Work

For learning data visualization and written narrative techniques
\(\left.$$
\begin{array}{|c|c|}\hline \text { Homework 1 } \\
\text { graphics } \\
10 \%\end{array}
$$ $$
\begin{array}{c}\text { Homework 2 } \\
\text { graphics }\end{array}
$$ \quad \begin{array}{c}Homework 3 <br>

writing\end{array}\right\}\)| $10 \%$ |
| :--- |

contextualize numbers - who ${ }^{\text {what }}$ when ${ }^{\text {where }}$ - and compare

25
context for numbers, the w's, example - suppose you want to include some mortality statistics in the introductory section of a paper analyzing the Black Plague in fourteenth-century Europe:

## worse

There were 25 million deaths.
-\_(ツ)_-
During the fourteenth century, 25 million people died in Europe.

## better

When the Black Plague hit Europe in the latter half of the fourteenth century, it took the lives of 25 million people, young and old, city dwellers and those living in the countryside. The disease killed about onequarter of Europe's total population at the time (Mack, n.d.).

## context for numbers, effective examples and comparisons - for choosing, aim for simplicity and plausibility

## worse

In 2001, the average temperature in the New York City area was 56.3 degrees Fahrenheit.

## -_(ツ)_-

In 2001, the average temperature in the New York City area was 56.3 degrees Fahrenheit, 1.5 degrees above normal.

## better

In 2001, the average temperature in the New York City area was 56.3 degrees Fahrenheit, 1.5 degrees above normal, making it the seventh warmest year on record.

## context for numbers, interpret, don't just report (recall Doumont's "messages, not just information"?)

## worse

In 1998, total expenditures on health care in the United States were estimated to be more than \$1.1 trillion (Centers for Medicare and Medicaid 2004).

## -(ツ)_-

In 1998, total expenditures on health care in the United States were estimated to be more than $\$ 1.1$ trillion, equivalent to $\$ 4,178$ for every man, woman, and child in the nation
(Centers for Medicare and Medicaid 2004).

## better (for context)

Health care costs in other countries suggest per capita costs in the United States is too high, averaging $\$ 4,178$ in the 1990 s, $13.0 \%$ of gross domestic product. That was higher than in any other country.

In comparison, Switzerland-with the
second highest per capita health costs-spent approximately $\$ 3,835$ per person, or $10.4 \%$ of GDP. No other country exceeded $\$ 3,000$ per capita (World Bank 2001).

Human body
Animals
Plants
Buildings and constructions
Machines and tools
Games and Sport
Money
Cooking and food
Heat and cold
Light and darkness
Movement and direction

## source domain $>$ target domain

The thing you are trying to explain

## context for numbers, effective metaphors, similes, analogies - example one

To bring [Rembrandt] back, we distilled the artistic DNA from his work and used it to create The Next Rembrandt. . . . To create new artwork using data from Rembrandt's paintings, we had to maximize the data pool from which to pull information. . . . We created a height map using two different algorithms that found texture patterns of canvas surfaces and layers of paint. That information was transformed into height data, allowing us to mimic the brushstrokes used by Rembrandt.

[^0]
## context for numbers, effective metaphors, similes, analogies - example two

## setting up the metaphor

How do we think about the albums we love? A lonely microphone in a smoky recording studio? A needle's press into hot wax? A rotating can of magnetic tape? A button that clicks before the first note drops? No!

The mechanical ephemera of music's recording, storage, and playback may cue nostalgia, but they are not where the magic lies. The magic is in the music. The magic is in the information that the apparatuses capture, preserve, and make accessible. It is the same with all information.

## referring back

When you envision data, do not get stuck in encoding and storage. Instead, try to see the music.

Looking at tables of any substantial size is a little like looking at the grooves of a record with a magnifying glass. You can see the data but you will not hear the music.

Then, we can see data for what it is, whispers from a past world waiting for its music to be heard again.

## context for numbers, for relationships between numbers - compare with direction and magnitude

worse

Mortality and age are correlated.

## -<br>(ツ)_--

As age increases, mortality increases.

## better

Among the elderly, mortality roughly doubles for each successive five-year age group.

## context for numbers, languages of comparison - additive, multiplicative, graphical

The Apollo program crew had one more astronaut than Project Gemini. Apollo's Saturn V rocket had about seventeen times more thrust than the Gemini-Titan II. - Andrews, R J. Info We Trust: How to Inspire the World with Data.

```
one more"
33 versus 1.9
additive comparison (relative versus absolute)
"Seventeen times more"
"1,700 percent more"
multiplicative comparison (relative)
```



## context for numbers, strategy for summarizing numeric patterns - generalizations, examples, exceptions

## generalizations

For a generalization, come up with a description that characterizes a relationship among most, if not all, of the numbers.

## examples

Illustrate your generalization with numbers from your table or chart. This step anchors your generalization to the specific numbers upon which it is based.

It ties the prose and table or chart together. By reporting a few illustrative numbers, you implicitly show your readers where in the table or chart those numbers came from as well as the comparison involved.

## exceptions

When portraying an exception, explain its overall shape and how it differs from the generalization you described and illustrated. Is it higher or lower? By how much? If a trend, is it moving toward or away from the pattern you are contrasting it against? Finally, provide numeric examples from the table or chart to illustrate the exception.
visual organization with grids and typography

## visual organization, grids

Arranging surfaces and spaces into a grid creates conformity among texts, images and diagrams. The size of each implies its importance. Reducing elements in a grid suggests planning, intelligibility, clarity, and orderliness of design. One grid allows many creative ways to show relationships . . .

Orderliness adds credibility to the information and induces confidence. Information presented with clear and logically set out titles, subtitles, texts, illustrations and captions will not only be read more quickly and easily but the information will also be better understood.


Most readers are looking for reasons to stop reading. . . . Readers have other demands on their time. . . . The goal of most professional writing is persuasion, and attention is a prerequisite for persuasion. Good typography can help your reader devote less attention to the mechanics of reading and more attention to your message.

- Matthew Butterick, Practical Typography

visual organization, grids \& typography - example memo
 those visualizations did not combine dimensions of space and time, which the public would find helpful to see trends in bike and station availability by neighborhood throughout a day, we can begin our analysis there.

We'll use published data from NYC OpenData and The Open Bus Project, including date, time, station ID, and ride instances for all our docking stations and bikes since date, time, station ID, and ride instances for all our docking stations and bikes since
we began service. To begin, we can visually explore the intersection of trends in both we began service. To begin, we can visually explore the intersection of trends in both
time and location with this data to understand problematic neighborhoods and, even, individual stations, using current data.

Then, we will build upon the initial work, exploring causal factors such as the availability of alternative transportation (e.g., subway stations near docking stations) and weather. Both of which, we have available data that can be joined using timestamps
The project aligns with our goals and shows the public that we are, in Simmon's words, "innovative in how we meet this challenge." Let's draft a detailed proposal.

## Sincerely,

Scott Spencer
 News. West Side Rag (blog). August 19 , 2017. htpsy// wew. west
continue-to-go-emply-just-when-uper-west-siderss need.them

$\longleftarrow$ Line length 45-90 characters $\longrightarrow$
organizing numbers - tables and semi-graphic displays

## organizing numbers, tables for comparing exact numbers

"The conventional sentence is a poor way to show more than two numbers because it prevents comparisons within the data.

The linearly organized flow of words, folded over at arbitrary points (decided not by content but by the happenstance of column width), offers less than one effective dimension for organizing the data."

- Edward Tufte, The Visual Display of Quantitative Information


## Instead of:

Nearly 53 percent of the type A group did something or other compared to 46 percent of $B$ and slightly more than 57 percent of $C$.

Arrange the type to facilitate comparisons, as in this text-table:

The three groups differed in how they did something or other:

> Group A 53\%
> Group B 46\%
> Group C $57 \%$

There are nearly always better sequences than alphabetical-for example, ordering by content or by data values:

Group B 46\%
Group A 53\%
Group C 57\%
organizing numbers, using $|\mathbf{g}| \mathbf{r}|\mathbf{i}| \mathbf{d}|\mathbf{s}|$ for arranging (a table of) numbers


## organizing numbers, placement in grid? reduce cognitive load - Gestalt principle of proximity

spacing-horizontal narrower than vertical
spacing-horizontal wider than vertical

## organizing numbers, example placement in grid - proximity for perceived column groups, groups of columns


organizing numbers, separating information types - Gestalt principle of similarity (e.g., by attributes of color)


## organizing numbers, example placement in grid - with labels and annotations (and color encoding)

| Table |  |  | r takes, | s, ou | ur B | Baye | esian | 1 m | hode | 1 ex | xpec | cts | batt | ting | -tea | m | runs | sto | inc | reas | se |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | thes | ese amo | moun | ats d | durin | ing t | the | hal |  | ming | \%, 8 | given | g ga | ame | sta | ate a | and | cou | nt. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Ganke | nestate |  |  |  |  |  |  |  |  |  |  |  |  | Oun | ht |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 0-0 |  | 0-1 |  | 0-2 |  | 1-0 |  | 1-1 |  | 1-2 |  | 2-0 |  | 2-1 |  | 2-2 |  | 3-0 | 3-1 |  | 3-2 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | :0 |  | 0.54 |  | 0.50 |  | 0.44 |  | 0.59 |  | 0.54 |  | 0.47 |  | 0.66 |  | 0.61 |  | 0.54 |  | 0.77 | 0.74 |  | 0.69 |  |
|  |  |  | 1-:0 |  | 0.96 |  | 0.89 |  | 0.79 |  | 1.04 |  | 0.96 |  | 0.85 |  | 1.16 |  | 1.08 |  | 0.96 |  | 1.34 | 1.29 |  | 1.22 |  |
|  |  |  | 2-:0 |  | 1.17 |  | 1.10 |  | 1.00 |  | 1.25 |  | 1.18 |  | 1.06 |  | 1.37 |  | 1.29 |  | 1.17 |  | 1.55 | 1.50 |  | 1.43 |  |
|  |  |  | 2-:0 |  | 1.54 |  | 1.47 |  | 1.35 |  | 1.65 |  | 1.55 |  | 1.42 |  | 1.79 |  | 1.69 |  | 1.55 |  | 2.01 | 1.95 |  | 1.86 |  |
|  |  |  | -3:0 |  | 1.40 |  | 1.36 |  | 1.29 |  | 1.45 |  | 1.40 |  | 1.33 |  | 1.53 |  | 1.48 |  | 1.40 |  | 1.65 | 1.61 |  | 1.57 |  |
|  |  |  | -3:0 |  | 1.80 |  | 1.71 |  | 1.57 |  | 1.91 |  | 1.81 |  | 1.65 |  | 2.08 |  | 1.96 |  | 1.80 |  | 2.33 | 2.26 |  | 2.16 |  |
|  |  |  | -23:0 |  | 1.93 |  | 1.86 |  | 1.75 |  | 2.02 |  | 1.94 |  | 1.82 |  | 2.15 |  | 2.06 |  | 1.94 |  | 2.34 | 2.29 |  | 2.21 |  |
|  |  |  | 123:0 |  | 2.28 |  | 2.19 |  | 2.03 |  | 2.40 |  | 2.29 |  | 2.12 |  | 2.58 |  | 2.46 |  | 2.29 |  | 2.84 | 2.77 |  | 2.67 |  |
|  |  |  | out |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 0.29 |  | 0.26 |  | 0.22 |  | 0.32 |  | 0.29 |  | 0.24 |  | 0.37 |  | 0.34 |  | 0.29 |  | 0.44 | 0.42 |  | 0.39 |  |
|  |  |  | 1-:1 |  | 0.56 |  | 0.51 |  | 0.43 |  | 0.62 |  | 0.56 |  | 0.48 |  | 0.71 |  | 0.65 |  | 0.56 |  | 0.84 | 0.81 |  | 0.75 |  |
|  |  |  | 2-:1 |  | 0.71 |  | 0.66 |  | 0.58 |  | 0.77 |  | 0.71 |  | 0.63 |  | 0.86 |  | 0.80 |  | 0.71 |  | 1.00 | 0.96 |  | 0.91 |  |
|  |  |  | 2-:1 |  | 0.98 |  | 0.91 |  | 0.79 |  | 1.07 |  | 0.99 |  | 0.86 |  | 1.21 |  | 1.11 |  | 0.98 |  | 1.41 | 1.35 |  | 1.27 |  |
|  |  |  | 3:1 |  | 0.97 |  | 0.89 |  | 0.77 |  | 1.07 |  | 0.98 |  | 0.85 |  | 1.21 |  | 1.11 |  | 0.97 |  | 1.42 | 1.36 |  | 1.28 |  |
|  |  |  | -3:1 |  | 1.21 |  | 1.13 |  | 0.98 |  | 1.33 |  | 1.22 |  | 1.07 |  | 1.50 |  | 1.38 |  | 1.22 |  | 1.75 | 1.68 |  | 1.58 |  |
|  |  |  | 23:1 |  | 1.33 |  | 1.24 |  | 1.09 |  | 1.45 |  | 1.34 |  | 1.18 |  | 1.62 |  | 1.51 |  | 1.34 |  | 1.88 | 1.81 |  | 1.71 |  |
|  |  |  | 123:1 |  | 1.62 |  | 1.50 |  | 1.31 |  | 1.78 |  | 1.63 |  | 1.43 |  | 1.99 |  | 1.84 |  | 1.63 |  | 2.33 | 2.24 |  | 2.10 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | :2 |  | 0.11 |  | 0.10 |  | 0.07 |  | 0.13 |  | 0.11 |  | 0.09 |  | 0.16 |  | 0.14 |  | 0.11 |  | 0.20 | 0.19 |  | 0.17 |  |
|  |  |  | 1-:2 |  | 0.23 |  | 0.20 |  | 0.15 |  | 0.27 |  | 0.24 |  | 0.18 |  | 0.33 |  | 0.29 |  | 0.23 |  | 0.42 | 0.40 |  | 0.36 |  |
|  |  |  | 2-:2 |  | 0.30 |  | 0.26 |  | 0.20 |  | 0.36 |  | 0.31 |  | 0.24 |  | 0.44 |  | 0.38 |  | 0.31 |  | 0.55 | 0.52 |  | 0.48 |  |
|  |  |  | 2-:2 |  | 0.45 |  | 0.39 |  | 0.29 |  | 0.53 |  | 0.46 |  | 0.35 |  | 0.65 |  | 0.57 |  | 0.46 |  | 0.82 | 0.77 |  | 0.70 |  |
|  |  |  | -3:2 |  | 0.35 |  | 0.30 |  | 0.22 |  | 0.41 |  | 0.36 |  | 0.27 |  | 0.50 |  | 0.44 |  | 0.35 |  | 0.64 | 0.60 |  | 0.55 |  |
|  |  |  | -3:2 |  | 0.50 |  | 0.43 |  | 0.32 |  | 0.59 |  | 0.50 |  | 0.38 |  | 0.71 |  | 0.62 |  | 0.50 |  | 0.90 | 0.85 |  | 0.77 |  |
|  |  |  | -23:2 |  | 0.52 |  | 0.45 |  | 0.33 |  | 0.62 |  | 0.53 |  | 0.40 |  | 0.75 |  | 0.66 |  | 0.53 |  | 0.95 | 0.89 |  | 0.81 |  |
|  |  |  | 123:2 |  | 0.82 |  | 0.71 |  | 0.53 |  | 0.97 |  | 0.83 |  | 0.64 |  | 1.18 |  | 1.03 |  | 0.83 |  | 1.49 | 1.41 |  | 1.28 |  |
|  |  | Note: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Exple | ectatior | ns fif | from | m | nodel | l ft | t to | St | atca | ast | data | , 20 | 017 | 201 | 19. |  |  |  |  |  |  |  |  |  |  |

## organizing numbers, example placement in grids - gridlines are invisibll

Table 1: For takes, our Bayesian model expects batting-team runs to increase by these amounts during the half-inning, given game state and count

| Game State | Count |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-0 | 0-1 | 0-2 | 1-0 | 1-1 | 1-2 | 2-0 | 2-1 | 2-2 | 3-0 | 3-1 | 3-2 |
| No outs |  |  |  |  |  |  |  |  |  |  |  |  |
| -0 | 0.54 | 0.50 | 0.44 | 0.59 | 0.54 | 0.47 | 0.66 | 0.61 | 0.54 | 0.77 | 0.74 | 0.69 |
| 1-:0 | 0.96 | 0.89 | 0.79 | 1.04 | 0.96 | 0.85 | 1.16 | 1.08 | 0.96 | 1.34 | 1.29 | 1.22 |
| -2-:0 | 1.17 | 1.10 | 1.00 | 1.25 | 1.18 | 1.06 | 1.37 | 1.29 | 1.17 | 1.55 | 1.50 | 1.43 |
| -3:0 | 1.40 | 1.36 | 1.29 | 1.45 | 1.40 | 1.33 | 1.53 | 1.48 | 1.40 | 1.65 | 1.61 | 1.57 |
| 12-:0 | 1.54 | 1.47 | 1.35 | 1.65 | 1.55 | 1.42 | 1.79 | 1.69 | 1.55 | 2.01 | 1.95 | 1.86 |
| 1-3:0 | 1.80 | 1.71 | 1.57 | 1.91 | 1.81 | 1.65 | 2.08 | 1.96 | 1.80 | 2.33 | 2.26 | 2.16 |
| -23:0 | 1.93 | 1.86 | 1.75 | 2.02 | 1.94 | 1.82 | 2.15 | 2.06 | 1.94 | 2.34 | 2.29 | 2.21 |
| 123:0 | 2.28 | 2.19 | 2.03 | 2.40 | 2.29 | 2.12 | 2.58 | 2.46 | 2.29 | 2.84 | 2.77 | 2.67 |
| One out |  |  |  |  |  |  |  |  |  |  |  |  |
| -:1 | 0.29 | 0.26 | 0.22 | 0.32 | 0.29 | 0.24 | 0.37 | 0.34 | 0.29 | 0.44 | 0.42 | 0.39 |
| 1-:1 | 0.56 | 0.51 | 0.43 | 0.62 | 0.56 | 0.48 | 0.71 | 0.65 | 0.56 | 0.84 | 0.81 | 0.75 |
| -2-:1 | 0.71 | 0.66 | 0.58 | 0.77 | 0.71 | 0.63 | 0.86 | 0.80 | 0.71 | 1.00 | 0.96 | 0.91 |
| -3:1 | 0.97 | 0.89 | 0.77 | 1.07 | 0.98 | 0.85 | 1.21 | 1.11 | 0.97 | 1.42 | 1.36 | 1.28 |
| 12-:1 | 0.98 | 0.91 | 0.79 | 1.07 | 0.99 | 0.86 | 1.21 | 1.11 | 0.98 | 1.41 | 1.35 | 1.27 |
| 1-3:1 | 1.21 | 1.13 | 0.98 | 1.33 | 1.22 | 1.07 | 1.50 | 1.38 | 1.22 | 1.75 | 1.68 | 1.58 |
| -23:1 | 1.33 | 1.24 | 1.09 | 1.45 | 1.34 | 1.18 | 1.62 | 1.51 | 1.34 | 1.88 | 1.81 | 1.71 |
| 123:1 | 1.62 | 1.50 | 1.31 | 1.78 | 1.63 | 1.43 | 1.99 | 1.84 | 1.63 | 2.33 | 2.24 | 2.10 |
| Two outs |  |  |  |  |  |  |  |  |  |  |  |  |
| -:2 | 0.11 | 0.10 | 0.07 | 0.13 | 0.11 | 0.09 | 0.16 | 0.14 | 0.11 | 0.20 | 0.19 | 0.17 |
| 1-:2 | 0.23 | 0.20 | 0.15 | 0.27 | 0.24 | 0.18 | 0.33 | 0.29 | 0.23 | 0.42 | 0.40 | 0.36 |
| -2-:2 | 0.30 | 0.26 | 0.20 | 0.36 | 0.31 | 0.24 | 0.44 | 0.38 | 0.31 | 0.55 | 0.52 | 0.48 |
| -3:2 | 0.35 | 0.30 | 0.22 | 0.41 | 0.36 | 0.27 | 0.50 | 0.44 | 0.35 | 0.64 | 0.60 | 0.55 |
| 12-:2 | 0.45 | 0.39 | 0.29 | 0.53 | 0.46 | 0.35 | 0.65 | 0.57 | 0.46 | 0.82 | 0.77 | 0.70 |
| 1-3:2 | 0.50 | 0.43 | 0.32 | 0.59 | 0.50 | 0.38 | 0.71 | 0.62 | 0.50 | 0.90 | 0.85 | 0.77 |
| -23:2 | 0.52 | 0.45 | 0.33 | 0.62 | 0.53 | 0.40 | 0.75 | 0.66 | 0.53 | 0.95 | 0.89 | 0.81 |
| 123:2 | 0.82 | 0.71 | 0.53 | 0.97 | 0.83 | 0.64 | 1.18 | 1.03 | 0.83 | 1.49 | 1.41 | 1.28 |

[^1]
## organizing numbers, names and descriptions of common table components


non-rectangular, tabular data and semi-graphic displays (e.g., stem-and-leaf)

## non-rectangullar and semi-graphic, tabular variations, example - stem-and-leaf diagram

| 0 | 1 | 2 | 6 | 7 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 3 | 4 | 4 | 7 | 8 |  |  |  |  |  |  |  |
| 2 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 5 | 8 | 8 | 9 |  |
| 3 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 7 | 7 | 8 | 9 | 9 |  |
| 4 | 0 | 0 | 2 | 2 | 3 | 4 | 4 | 4 | 5 | 5 | 8 | 8 |  |
| 5 | 1 | 1 | 4 | 9 |  |  |  |  |  |  |  |  |  |
| 6 | 5 | 8 |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 4 | 5 | 8 | 9 | 9 |  |
| 8 | 1 | 2 | 4 | 4 | 5 | 5 | 7 | 7 | 7 | 9 | 9 | 9 | 9 |
| 9 | 3 | 7 |  |  |  |  |  |  |  |  |  |  |  |
| 10 | 0 |  |  |  |  |  |  |  |  |  |  |  |  |

## non-rectangullar and semi-graphic, tabular variations, example - data/text placement for comparison


integrating data with text, text with data

## text-data integration, integrate data tables and graphics into narrative (principle of proximity)



## text-data integration, annotate data graphics with descriptions (principle of proximity) - example



## - Schleuss, Jon, and Rong-Cong Lin

 Angeles Times
## text-data integration, linking data and narrative with color (principle of proximity and similarity) - example

Consider 5000 samples drawn from a standard
normal distribution: the sample mean is $\sim 0$.


[^2]
## text-data integration, linking language- parallel structure can reduce the audience's cognitive load in comparing



Figure 7.3. Matched pair differences, treated-minus-control, in levels of lead in children's blood, $\mu \mathrm{g} / \mathrm{dl}$. In each figure there is a horizontal line at zero. Panel (a) shows the differences, while panel (b) separates the differences into three groups based on the level of exposure to lead of the exposed father.
"One might hope that panel (a) of Figure 7.3 is analogous to a simple randomized experiment in which one child in each of 33 matched pairs was picked at random for exposure. One might hope that panel (b) of Figure 7.3 is analogous to a different simple randomized experiment in which levels of exposure were assigned to pairs at random. One might hope that panels (a) and (b) are jointly analogous to a randomized experiment in which both randomizations were done, within and among pairs. All three of these hopes may fail to be realized: there might be bias in treatment assignment within pairs or bias in assignment of levels of exposure to pairs."

## text-data integration, readability improves with parallel structure between sorted table or graphic and narrative

## empirical ordering, theoretical grouping of data

Decide on the main point you want to make about the data and arrange the rows and columns accordingly.

Ordering: for many tables or charts presenting distributions or associations, an important aim is to show which items have the highest and the lowest values and where other categories fall relative to those extremes.

Grouping: consider arranging items into conceptually related sets.

## parallel structure in narrative

When writing about the patterns shown in tables or charts, proceed systematically, describing the numbers in the same order as in those displays.

Another tip: if possible, use the same organizing principles in all the tables within a document, such as tables reporting descriptive statistics and multivariate results for the same set of variables.

## text-data integration, parallel structure between sorted table or graphic and narrative - example

## example empirical ordering



Fig. 3. Major categories of expenditures, descending dollar value, 2002 U.S. Consumer Expenditure Survey

## example parallel structure in narrative

Figure 3 presents average consumer expenditures for the United States in 2002 in descending order of dollar value. Housing was the highest expenditure category, followed by transportation, food, and personal expenditures . . .

## organizing numbers, narrative for our example table

Using Table 1, we can calculate the value of a strike by subtracting the expected run value of a strike, given the game state and count, from the value of a ball, starting from the same game state and count. Let's say there is a runner on first and second with one out, and the count is 1 ball, 1 strike, giving us 0.99 expected runs the rest of the inning. Assuming the batter doesn't swing on the next pitch, a strike lowers expected runs to 0.86 while a ball raises it to 1.11 . Thus, in this scenario, the expected value of a strike would be 0.86-1.11, or 0.25 runs.

## organizing numbers, placing data table in narrative (proximity), linking narrative to data (similarity)

Using Table 1, we can calculate the value of a strike by subtracting the expected run value of a strike, given the game state and count, from the value of a ball, starting from the same game state and count. Let's say there is a runner on first and second with one out, and the count is 1 ball, 1 strike, suggesting we should expect $\mathbf{0 . 9 9}$ more runs this inning:

Table 1: For takes, our Bayesian model expects batting-team runs to increase
by these amounts during the half-inning, given game state and count.

| Game State | Count |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-0 | 0-1 | 0-2 | 1-0 | 1-1 | 1-2 | 2-0 | 2-1 | 2-2 | 3-0 | 3-1 | 3-2 |
| No outs |  |  |  |  |  |  |  |  |  |  |  |  |
| -:0 | 0.54 | 0.50 | 0.44 | 0.59 | 0.54 | 0.47 | 0.66 | 0.61 | 0.54 | 0.77 | 0.74 | 0.69 |
| 1-:0 | 0.96 | 0.89 | 0.79 | 1.04 | 0.96 | 0.85 | 1.16 | 1.08 | 0.96 | 1.34 | 1.29 | 1.22 |
| -2-:0 | 1.17 | 1.10 | 1.00 | 1.25 | 1.18 | 1.06 | 1.37 | 1.29 | 1.17 | 1.55 | 1.50 | 1.43 |
| -3:0 | 1.40 | 1.36 | 1.29 | 1.45 | 1.40 | 1.33 | 1.53 | 1.48 | 1.40 | 1.65 | 1.61 | 1.57 |
| 12-:0 | 1.54 | 1.47 | 1.35 | 1.65 | 1.55 | 1.42 | 1.79 | 1.69 | 1.55 | 2.01 | 1.95 | 1.86 |
| 1-3:0 | 1.80 | 1.71 | 1.57 | 1.91 | 1.81 | 1.65 | 2.08 | 1.96 | 1.80 | 2.33 | 2.26 | 2.16 |
| -23:0 | 1.93 | 1.86 | 1.75 | 2.02 | 1.94 | 1.82 | 2.15 | 2.06 | 1.94 | 2.34 | 2.29 | 2.21 |
| 123:0 | 2.28 | 2.19 | 2.03 | 2.40 | 2.29 | 2.12 | 2.58 | 2.46 | 2.29 | 2.84 | 2.77 | 2.67 |
| One out |  |  |  |  |  |  |  |  |  |  |  |  |
| -:1 | 0.29 | 0.26 | 0.22 | 0.32 | 0.29 | 0.24 | 0.37 | 0.34 | 0.29 | 0.44 | 0.42 | 0.39 |
| 1-:1 | 0.56 | 0.51 | 0.43 | 0.62 | 0.56 | 0.48 | 0.71 | 0.65 | 0.56 | 0.84 | 0.81 | 0.75 |
| $-2-1$ | 0.71 | 0.66 | 0.58 | 0.77 | 0.71 | 0.63 | 0.86 | 0.80 | 0.71 | 1.00 | 0.96 | 0.91 |
| -3:1 | 0.97 | 0.89 | 0.77 | 1.07 | 0.98 | 0.85 | 1.21 | 1.11 | 0.97 | 1.42 | 1.36 | 1.28 |
| 12-1 | 0.98 | 0.91 | 0.79 | 1.07 | 0.99 | 0.86 | 1.21 | 1.11 | 0.98 | 1.41 | 1.35 | 1.27 |
| 1-3:1 | 1.21 | 1.13 | 0.98 | 1.33 | 1.22 | 1.07 | 1.50 | 1.38 | 1.22 | 1.75 | 1.68 | 1.58 |
| -23:1 | 1.33 | 1.24 | 1.09 | 1.45 | 1.34 | 1.18 | 1.62 | 1.51 | 1.34 | 1.88 | 1.81 | 1.71 |
| 123:1 | 1.62 | 1.50 | 1.31 | 1.78 | 1.63 | 1.43 | 1.99 | 1.84 | 1.63 | 2.33 | 2.24 | 2.10 |
| Two outs |  |  |  |  |  |  |  |  |  |  |  |  |
| -:2 | 0.11 | 0.10 | 0.07 | 0.13 | 0.11 | 0.09 | 0.16 | 0.14 | 0.11 | 0.20 | 0.19 | 0.17 |
| 1-:2 | 0.23 | 0.20 | 0.15 | 0.27 | 0.24 | 0.18 | 0.33 | 0.29 | 0.23 | 0.42 | 0.40 | 0.36 |
| -2-2 | 0.30 | 0.26 | 0.20 | 0.36 | 0.31 | 0.24 | 0.44 | 0.38 | 0.31 | 0.55 | 0.52 | 0.48 |
| -3:2 | 0.35 | 0.30 | 0.22 | 0.41 | 0.36 | 0.27 | 0.50 | 0.44 | 0.35 | 0.64 | 0.60 | 0.55 |
| 12-:2 | 0.45 | 0.39 | 0.29 | 0.53 | 0.46 | 0.35 | 0.65 | 0.57 | 0.46 | 0.82 | 0.77 | 0.70 |
| 1-3:2 | 0.50 | 0.43 | 0.32 | 0.59 | 0.50 | 0.38 | 0.71 | 0.62 | 0.50 | 0.90 | 0.85 | 0.77 |
| -23:2 | 0.52 | 0.45 | 0.33 | 0.62 | 0.53 | 0.40 | 0.75 | 0.66 | 0.53 | 0.95 | 0.89 | 0.81 |
| 123:2 | 0.82 | 0.71 | 0.53 | 0.97 | 0.83 | 0.64 | 1.18 | 1.03 | 0.83 | 1.49 | 1.41 | 1.28 |

Assuming the batter doesn't swing on the next pitch, a strike lowers expected runs to 0.86 while a ball raises it to 1.11 . Thus, in this scenario, the expected value of a strike would be $0.86-1.11$, or -0.25 runs.
bringing teachings together - draft proposal as example

## data in narrative, proposal as a multi-level narrative - title, headings, body, captions

Spencer, Scott. (Draft) Proposal to Scott Powers. "Proposal for Exploring Game
"Orderliness adds credibility to the information and induces confidence. Information presented with clear and logically set out titles, subtitles, texts, illustrations and captions will not only be read more quickly and easily but the information will also be better understood."


[^3]
## data in narrative, messages first, details follow



## data in narrative, best practices in visual organization with grids \& typography

Proposal for exploring game decisions informed by
Average line length: 84 characters with spaces
Butterick recommended 45-90
,


so. we ned to joindy modd probbbilitics of fall game cents and base decisions on copx
tations of those distributions. With adequate computing emergigng we can be first using
the probublatstc programming languge Stan and paralld procesung To demonstrate
the concopt considera probubbily model for desisions to stel scond basc. bdow, which
suggets teams are too conservatrec. kaving wins unclimed This moded allown us toask.


Our current analyses do not optimize expected wins
 tional dess memed for dexicion-meling thar maximioes empeted utiliy. Consider that ] $]$

 Common anulyws and h heuristios for theses situations are indequate they not onfy owe. fit the dut (ff any exis). but abso offer no manner of etimuting changes in probubidito for maximizing apected utility (winning the game

Accuratch quantifining probbabilitiox and dhangss thereof in a given context ensble usto answer counteffactualk from which we can build strategio that maximize our objective
(Parmiginini 202). This appococh is posiblec at salk using Stan (Carpenter at al 2017).

$=$ Modeling probabilities for steal success illustrates a broader benefit

Tosec the potental of implementing probabinit

Leading (line spacing): $145 \%$ of font size Butterick recommended: $120-145 \%$ of font size
"Most readers are looking for reasons to stop reading. . . . Readers have other demands on their time. ... The goal of most professional writing is persuasion, and attention is a prerequisite for persuasion. Good typography can help your reader devote less attention to the mechanics of reading and more attention to your message."

- Butterick, Matthew, Practical Typography


## data in narrative, data graphics as paragraphs about data - linking narrative and data

"Words, graphics, and tables are different mechanisms with but a single purpose-the presentation of information. Why should the flow of information be broken up into different places on the page...?"

- Edward Tufte, The Visual Display of Quantitative Information

resources


## References

Spencer, Scott."Integrating text and data." In Data in Wonderland. 2021. https:// ssp3nc3r.github.io/data in wonderland.

Andrews, R J. Info We Trust: How to Inspire the World with Data. Wiley, 2019.
Butterick, Matthew. "Butterick's Practical Typography," 2018. https:// practicaltypography.com/.

Doumont, Jean-Luc. "Effective Written Documents." In Trees, Maps, and Theorems. Effective Communication for Rational Minds. Principiæ, 2009.

Farnsworth, Ward. Classical English Rhetoric. David R. Godine Publisher, 2011.
Few, Stephen. "Table Design." In Show Me the Numbers: Designing Tables and Graphs to Enlighten. Second edition. Burlingame, Calif: Analytics Press, 2012.

Lakoff, George, and Mark Johnson. Metaphors We Live By. Chicago: University of Chicago Press, 1980.

Miller, Jane E. "Organizing Data in Tables and Charts: Different Criteria for Different Tasks". Teaching Statistics 29, no. 3 (August 2007): 98-101. https://doi.org/10.1111/ j.1467-9639.2007.00275.x.
———. "Seven Basic Principles" and "Creating Effective Tables." In The Chicago Guide to Writing about Multivariate Analysis, Second edition., 13-33. Chicago Guides to Writing, Editing, and Publishing. Chicago: University of Chicago Press, 2013.

Müller-Brockmann, Josef. Grid Systems in Graphic Design. A Visual Communication Manual for Graphic Designers, Typographers, and Three Dimensional Designers. ARTHUR NIGGLI LTD., 1996.

Rutter, Richard. "Arrangement and Composition". In Web Typography. A Handbook for Designing Beautiful and Effective Responsive Typography. 177-192. Ampersand Type, 2017

Spencer, Scott. (Draft) Proposal to Scott Powers. "Proposal for Exploring Game Decisions Informed by Expectations of Joint Probability Distributions." February 14, 2019.

Tufte, Edward R. "Aesthetics and Technique in Data Graphical Design." In The Visual Display of Quantitative Information, 176-90. Graphics Press, 2001.

Ware, Colin. Information Visualization: Perception for Design. Fourth. Philadelphia: Elsevier, Inc, 2020.

Zhu, Hao. "KableExtra: Construct Complex Table with 'kable' and Pipe Syntax." Manual, 2020. https://CRAN.R-project.org/package=kableExtra.


[^0]:    - Ing. The Next Rembrandt, https://www.nextrembrandt.com. April 2016.

[^1]:    Expectations from model fit to Statcast data, 2017-2019

[^2]:    - Kay, Matthew, and Jeffrey Heer. Beyond Weber's Law: A Second Look at Ranking Visualizations of Correlation. IEEE Transactions on Visualization and Computer Graphics 22, no. 1 (January 31, 2016): 469-78

[^3]:    Müller-Brockmann, Grid systems in graphic design

