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learn to drive change using data visuals and narrative

No one ever made a decision because
of a number. They need a story.

Daniel Kahneman, psychologist,
behavioral economist, and author

/Data Anayses\

Narratives

Explain

Engage

Scott Spencer / ()

Enlighten

Visuals

“Data! Data! Data!” he cried
impatiently. “I cant make

bricks without clay”

Sherlock Holmes by Sir
Arthur Conan Doyle, author

The greatest value of a picture is
when it forces us to notice what
we never expected to see.

John W Tukey, mathematician
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general course deliverable timeline

Individual Work Group work

For learning data visualization For building graphics and narrative
and written narrative techniques into interactive communications
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next deliverables, individual homework three and group proposal

Individual Work

For learning data visualization
and written narrative techniques

Homework 1 Homework 2 Homework 3
graphics graphics writing
10% 10% 10%

1 ScottSpencer/ ¢) oo

Group work

For building graphics and narrative
into interactive communications

Interactive Communication

20%

€ scott.spencer@columbia.edu

Multimodal communication

15%
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proposals — common components communicated



research proposal guidelines — where audience is granting agencies

[. Title
II. Abstract
I11. Project description
A. Results from prior agency support
B. Problem statement and significance
C. Introduction and background
e Relevant literature review
e Preliminary data
e Conceptual, empirical, or theoretical model
e Justification of approach or novel methods
D. Research plan
e Overview of research design
e Objectives or specific aims, hypotheses, and methods
e Analysis and expected results
e Timetable
E. Broader impacts
I'V. References cited

V. Budget and budget justification

Scott Spencer / ) 2


https://ssp3nc3r.github.io
mailto:scott.spencer@columbia.edu

research proposal guidelines — where audience is granting agencies

| accurately represents the content and

scope of the proposal.

Scott Spencer / ) 2
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research proposal guidelines — where audience is granting agencies

Scott Spencer / ()

| frames the goals and scope of the
study, briefly describes the methods, and
presents the hypotheses and expected

results or outputs.

Sets up proper expectations, so be careful to
avoid misleading readers into thinking that
the proposal addresses anything other than

the actual research topic.

Try for no more than two short paragraphs.
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research proposal guidelines — where audience is granting agencies

| begins with the big picture
and then funnels the reader through the

I11. Project description
hypotheses to the goals or specific aims of

B. Problem statement and the research.

Scott Spencer / ) @


https://ssp3nc3r.github.io
mailto:scott.spencer@columbia.edu

research proposal guidelines — where audience is granting agencies

| sets the stage for the
proposal by discussing the most widely

I11. Project description
accepted or influential papers on the

research.
C. Introduction and background
e Relevant The key is to be able to show where the
o Preliminary data proposed work would extend what has been

e Conceptual, empirical, or theoretical model

done or how the proposed fills a gap or

e Justification of approach or novel methods
resolves uncertainty, etc.

If the background literature does not help
you accomplish either of those two points,

you should question why you have it at all.
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research proposal guidelines — where audience is granting agencies

| can help establish

I11. Project description credibility, likely success, or novelty of the

proposal.
C. Introduction and background But avoid overstating the implications of the
o Relevant literature review data or suggesting you've already solved the
problem.

e Conceptual, empirical, or theoretical model

e Justification of approach or novel methods
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research proposal guidelines — where audience is granting agencies

| The goal is to keep the
[IT. Project description reader focused on the overall significance,
objectives, specific aims, and hypotheses
while providing important methodological,

technological, and analytical details.

Contains the details of the implementation,

analysis, and inferences of the study.

, , Convince the reader that the project can be
e Overview of research design

e Objectives or specific aims, hypotheses, and methods accomPhShed-
e Analysis and expected results

e Timetable

Scott Spencer / ) @
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research proposal guidelines — where audience is granting agencies

I11. Project description

D. Research plan

e Overview of research design

e Analysis and expected results

e Timetable

Scott Spencer / ()

Objectives refer to broad, scientifically far-
reaching aspects of a study, while hypotheses
refer to a more specific set of testable
conjectures. Specific aims focus on a
particular question or hypothesis and the

methods needed and outputs expected to
fulfill the aims.

Of note, these points will typically have
already been briefly introduced earlier, e.g.,

in the abstract. Bring in more detail here.
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research proposal guidelines — where audience is granting agencies

I11. Project description

D. Research plan

e Overview of research design

e Objectives or specific aims, hypotheses, and methods

e Timetable

Scott Spencer / ()

| If early
data are available, show how you will
analyze them to reach your objectives or

test your hypotheses.

If such data are unavailable, consider
culling data from the literature to show
how you expect the results to turn out and
to show how you will analyze your data

when they are available.

Complete a table or diagram, or run
statistical tests using the preliminary or
"synthesized" data. This can be a good way
to show how you would interpret the

results of such data.

@
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content, structure, and details
should adapt to our audience



our audiences | c-suite executives, general audiences, mixed audiences

Analytics
Executives

Marketing
Executives

Lead an organizations data analytics Chiet
strategy, driving data-related business Executives
changes to transform company into a

more analytics-driven one.

Lead responses to changing General and
circumstances; shapes products, sales Mixed Audiences
strategies, and marketing ideas,

collaborating across the company.

8
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Leads management of company;
responsible for maximizing company
value, high-level decisions on policy
and strategy; drives change.

The most challenging audiences to
understand and develop persuasive
messages.

16
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our audiences | c-suite executives, biases and guarding against them

Bias 7. WHAT Bias

AA'—-‘ )

8
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"N,
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c-suite executives, biases and guarding against them

Make analogies and
examples comparable
to the proposal.

Genuinely admit
uncertainty in the
proposal, and recognize
multiple options.

Scott Spencer / ()

Present ideas from a
neutral perspective.
Becoming too emotional
suggests bias.

Identify additional
data that may
provide new insight.

8

Consider
multiple anchors
in the proposal.
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reminder on how we use examples
to improve our own work



learning from examples, don’t copy — generalize from examples, then apply those generalizations to your work

An active learner asks questions, considers alternatives, questions
assumptions, and even questions the trustworthiness of the author
or speaker. An active learner tries to generalize specific examples,

and devise specific examples for generalities.

An active learner doesn’t passively sponge up information — that
doesn’'t work! — but uses the readings and lecturer’s argument as a

springboard for critical thought and deep understanding.

Scott Spencer / €) @)
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bringing teachings together — draft proposal as example



proposal as a multi-level narrative — title, headings, body, captions

Proposal for exploring game decisions informed by
expectations of joint probability distributions

Scott Powers
Scott Spencer

14 February 2019

Our game decisions based on current modeling do not maximize spend per win. We wit-
nessed the mid-market Astros use analytics to overtake us in the 2017 World Series
(Luhnow 2018ab). Our efforts also do not maximize expected wins. But we can. To do
s0, we need to jointly model probabilities of all game events and base decisions on expec-
tations of those distributions. With adequate computing emerging, we can be first using
the probabilistic programming language Stan and parallel processing. To demonstrate
the concept, consider a probability model for decisions to steal second base, below, which
suggests teams are too conservative, leaving wins unclaimed. This model allows us to ask,

for example—should Sanchez steal against Sabathia? Or against Pineda?

1 Our current analyses do not optimize expected wins

Seven terabytes of uncompressed data generated per game overshadow the lack of situa-
tional data needed for decision-making that maximizes expected utility. Consider that
pitchers, on average, only face10 percent of major league batters regardless of game state;
the reverse is true, too. Or when deciding whether a base runner should attempt to steal
against a specific pitcher and catcher in a state of play, say, we are lucky to have any data.
Common analyses and heuristics for these situations are inadequate: they not only over-
fit the data (if any exist), but also offer no manner of estimating changes in probabilities

for maximizing expected utility (winning the game).

Accurately quantifying probabilities, and changes thereof, in a given context enable us to
answer counterfactuals, from which we can build strategies that maximize our objectives
(Parmigiani 2002). This approach is possible at scale using Stan (Carpenter et al. 2017).

It's time to jointly model probabilities of all events.

2 Modeling probabilities for steal success illustrates a broader benefit

To see the potential of implementing probability models, let’s consider, again, the deci-

sion to steal bases, given a specific counterfactual:

In a game against New York Yankees, should Milwaukee Brewers's Lorenzo
Cain attempt to steal second base with no one else on base and two outs be-
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda

as pitcher? What if against Sanchez and CC Sabathia as pitcher?

More specifically, how can we know the expectation that Cain’s attempt in each situation
increases the probability of expected runs that inning and by how much? Using Stan, I've
coded a generative model that along with play outcomes considers various information
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017

data, this model suggests Cain should steal against Pineda, not Sabathia:

vs. Pineda / Sanchez vs. Sabathia / Sanchez

-03 -02 -0.1 0.0 0.1 -03 -02 -0.1 0.0 0.1
Expected change in runs in each scenario

Notably, we get these expectations without multiple trials of either scenario. More gen-
erally, this model suggests that on average team managers are too conservative, leaving

runs unrealized:

1.00-
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0.00- —
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Expected change in runs in an inning
The above is but one example of a more general approach that weighs probabilities of all
possible outcomes to maximize expected utility. With broad implementation—jointly

modeling the conditional probabilities of all relevant events—we can optimize decisions.

Figure 1. Of the two scenarios, Cain
should only attempt to steal against the
Sanchez—Pineda duo.

Figure 2. When the change in expected
runs is zero, managers should be indif-
ferent to attempted steals, saying go
half the time.

The black band represents the range of
variation across managers’ decisions.
At the intersection of indifference,

3  For value, compare an investment to free-agent costs

A fully-realized model will require significant effort from a team with deep experience in
baseball, generative modeling, and Stan. To get the talent, we should compare cost to ac-
quiring expected wins from free-agents. Each win above a replacement-level player costs
about 10 million per year (Swartz 2017). As with free-agent value over replacement
player, game-time decisions informed from more accurate probabilities should add wins
over aseason. The scope of what we can answer, moreover, goes beyond in-game strategy
(player acquisitions, salary arbitration). More immediately, however, we can begin to im-
plement thisapproach for specific events, with a scope closer to the example above, being

mindful that information learnt are conditional upon unmodeled context.

4  For accuracy, compare model results to betting market odds

Measuring performance of a fully-realized model may seem tricky: we only see the out-
come of our decisions. But we can, say, compare the accuracy of our estimates against the

betting market where interested investors are trying to forecast game outcomes.

5 Conclusion

The mid-market Astros show teams can do more with information. Millions in addi-
tional revenue—and more wins—await discovery through a joint, probability model of
all events from which we can maximize conditional expectations. Let’s discuss how to

draw the talent for a title worth our spend.
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example tries to maximize messages

Readability Statistics

Counts
Words
Characters
Paragraphs

Sentences

Averages
Sentences per Paragraph
Words per Sentence

Characters per Word

Readability
Flesch Reading Ease
Flesch-Kincaid Grade Level

Passive Sentences

732
4,083
18
35

2.9
18.1
5.3

33.2
13
0%

of the communication

Proposal for exploring game decisions informed by
expectations of joint probability distributions

Scott Powers
Scott Spencer

14 February 2019

Our game decisions based on current modeling do not maximize spend per win. We wit-
nessed the mid-market Astros use analytics to overtake us in the 2017 World Series
(Luhnow 2018ab). Our efforts also do not maximize expected wins. But we can. To do
so, we need to jointly model probabilities of all game events and base decisions on expec-
tations of those distributions. With adequate computing emerging, we can be first using
the probabilistic programming language Stan and parallel processing. To demonstrate
the concept, consider a probability model for decisions to steal second base, below, which
suggests teams are too conservative, leaving wins unclaimed. This model allows us to ask,

for example—should Sanchez steal against Sabathia? Or against Pineda?

1 Our current analyses do not optimize expected wins

Seven terabytes of uncompressed data generated per game overshadow the lack of situa-
tional data needed for decision-making that maximizes expected utility. Consider that
pitchers, on average, only face10 percent of major league batters regardless of game state;
the reverse is true, too. Or when deciding whether a base runner should attempt to steal
against a specific pitcher and catcher in a state of play, say, we are lucky to have any data.
Common analyses and heuristics for these situations are inadequate: they not only over-
fit the data (if any exist), but also offer no manner of estimating changes in probabilities

for maximizing expected utility (winning the game).

Accurately quantifying probabilities, and changes thereof, in a given context enable us to
answer counterfactuals, from which we can build strategies that maximize our objectives
(Parmigiani 2002). This approach is possible at scale using Stan (Carpenter et al. 2017).

It's time to jointly model probabilities of all events.

2 Modeling probabilities for steal success illustrates a broader benefit

To see the potential of implementing probability models, let’s consider, again, the deci-

sion to steal bases, given a specific counterfactual:

In a game against New York Yankees, should Milwaukee Brewers's Lorenzo
Cain attempt to steal second base with no one else on base and two outs be-
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda

as pitcher? What if against Sanchez and CC Sabathia as pitcher?

More specifically, how can we know the expectation that Cain’s attempt in each situation
increases the probability of expected runs that inning and by how much? Using Stan, I've
coded a generative model that along with play outcomes considers various information
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017
data, this model suggests Cain should steal against Pineda, not Sabathia:

vs. Pineda / Sanchez vs. Sabathia / Sanchez Fioure 1. Of the two scenarios, Cain

should only attempt to steal against the
Sanchez—Pineda duo.

- A4

03 -02 -01 00 01 03 -02 -01 00 01
Expected change in runs in each scenario

Notably, we get these expectations without multiple trials of either scenario. More gen-
erally, this model suggests that on average team managers are too conservative, leaving
runs unrealized:

Figure 2. When the change in expected
runs is zero, managers should be indif-
ferent to attempted steals, saying go
half the time.

o
3
a

The black band represents the range of
variation across managers’ decisions.
At the intersection of indifference,

Probability of steal attempt
o o
) @
& 3

— Indifferent
0.00- —

04 02 00 02
Expected change in runs in an inning
The above is but one example of a more general approach that weighs probabilities of all
possible outcomes to maximize expected utility. With broad implementation—jointly

modeling the conditional probabilities of all relevant events—we can optimize decisions.

3  Forvalue, compare an investment to free-agent costs

A fully-realized model will require significant effort from a team with deep experience in
baseball, generative modeling, and Stan. To get the talent, we should compare cost to ac-
quiring expected wins from free-agents. Each win above a replacement-level player costs
about 10 million per year (Swartz 2017). As with free-agent value over replacement
player, game-time decisions informed from more accurate probabilities should add wins
overaseason. The scope of what we can answer, moreover, goes beyond in-game strategy
(player acquisitions, salary arbitration). More immediately, however, we can begin to im-
plement this approach for specific events, with a scope closer to the example above, being

mindful that information learnt are conditional upon unmodeled context.

4  For accuracy, compare model results to betting market odds

Measuring performance of a fully-realized model may seem tricky: we only see the out-
come of our decisions. But we can, say, compare the accuracy of our estimates against the

betting market where interested investors are trying to forecast game outcomes.

5 Conclusion

The mid-market Astros show teams can do more with information. Millions in addi-
tional revenue—and more wins—await discovery through a joint, probability model of
all events from which we can maximize conditional expectations. Let’s discuss how to

draw the talent for a title worth our spend.
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data in narrative, organized on a grid

“Orderliness adds credibility to the
information and induces confidence.
Information presented with clear and
logically set out titles, subtitles, texts,
illustrations and captions will not
only be read more quickly and easily
but the information will also be

better understood.”

Proposal for exploring game decisions informed by
expectations of joint probability distributions

Scott Powers
Scott Spencer

14 February 2019

Our game decisions based on current modeling do not maximize spend per win. We wit-
nessed the mid-market Astros use analytics to overtake us in the 2017 World Serie|
(Luhnow 2018ab). Our efforts also do not maximize expected wins. But we can. To dof
s0, we need to jointly model probabilities of all game events and base decisions on expec|
tations of those distributions. With adequate computing emerging, we can be first using]
the probabilistic programming language Stan and parallel processing. To demonstrate]
the concept, consider a probability model for decisions to steal second base, below, which
suggests teams are too conservative, leaving wins unclaimed. This model allows us to ask|

for example—should Sanchez steal against Sabathia? Or against Pineda?

1 Our current analyses do not optimize expected wins

Seven terabytes of uncompressed data generated per game overshadow the lack of situa-|
tional data needed for decision-making that maximizes expected utility. Consider that]
pitchers, on average, only face10 percent of major league batters regardless of game state;
the reverse is true, too. Or when deciding whether a base runner should attempt to steall
against a specific pitcher and catcher in a state of play, say, we are lucky to have any data|
Common analyses and heuristics for these situations are inadequate: they not only over-|
fit the data (if any exist), but also offer no manner of estimating changes in probabilities|

for maximizing expected utility (winning the game).

Accurately quantifying probabilities, and changes thereof, in a given context enable us tof

answer counterfactuals, from which we can build strateg

bl

ies that maximize our objectives
(Parmigiani 2002). This approach is possible at scale using Stan (Carpenter et al. 2017),

It's time to jointly model probabilities of all events.

2 Modeling probabilities for steal success illustrates a broader benefit

I'o see the potential of implementing probability models, let's consider, again, the deci|

sion to steal bases, given a specific counterfactual:

In a game against New York Yankees, should Milwaukee Brewers's Lorenzo
Cain attempt to steal second base with no one else on base and two outs be-
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda

as pitcher? What if against Sanchez and CC Sabathia as pitcher?

More specifically, how can we know the expectation that Cain’s attempt in each situation
increases the probability of expected runs that inning and by how much? Using Stan, I've
coded a generative model that along with play outcomes considers various information
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017

data, this model suggests Cain should steal against Pineda, not Sabathia:

vs. Pineda / Sanchez vs. Sabathia / Sanchez

Expected change in runs in each scenario
Notably, we get these expectations without multiple trials of either scenario. More gen-

erally, this model suggests that on average team managers are too conservative, leaving

runs unrealized:

— Indifferent
Expected change in runs in an inning

I'he above is but one example of a more general approach that weighs probabilities of all
possible outcomes to maximize expected utility. With broad implementation—jointly

modeling the conditional probabilities of all relevant events—we can optimize decisions.

. Of the two scenarios, Cain
should only attempt to steal against the
Sanchez-Pineda duo.

. When the change in expected
runs is zero, managers should be indif-
ferent to attempted steals, saying go
half the time.

The black band represents the range of

variation across Y?’Hlﬂllg(’yﬂv dL‘(\S\OHS.
At the intersection of indifference,

3 For value, compare an investment to free-agent costs

A fully-realized model will require significant effort from a team with deep experience in
baseball, generative modeling, and Stan. To get the talent, we should compare cost to ac-
quiring expected wins from free-agents. Each win above a replacement-level player costs
about 10 million per year (Swartz 2017). As with free-agent value over replacement
Iplayer, game-time decisions informed from more accurate probabilities should add wins
over a season. The scope of what we can answer, moreover, goes beyond in-game strategy
(plal\'«:l‘ acquisitions, s;\lnl‘y arbitration). More immcdiatcly, however, we can bcgin toim-
Jplement this approach for specific events, with a scope closer to the example above, being

mindful that information learnt are conditional upon unmodeled context.

4  For accuracy, compare model results to betting market odds

Measuring performance of a fully-realized model may seem tricky: we only see the out
come of our decisions. But we can, say, compare the accuracy of our estimates against the

betting market where interested investors are trying to forecast game outcomes.

5  Conclusion

The mid-market Astros show teams can do more with information. Millions in addi-
tional revenue—and more wins—await discovery through a joint, probability model of
all events from which we can maximize conditional expectations. Let's discuss how to

draw the talent for a title worth our spend.
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data in narrative, applies typographic principles to separate hierarchies of information, improve readability

“Most readers are looking for reasons to stop reading. . . . Readers have other demands
on their time. . . . The goal of most professional writing is persuasion, and attention is
a prerequisite for persuasion. Good typography can help your reader devote less

attention to the mechanics of reading and more attention to your message.”

Proposal for exploring game decisions informed by
expectations of joint probability distributions

Scott Powers
Scott Spencer

14 February 2019

Our game decisions based on current modeling do not maximize spend per win. We wit

pessed the midomarket Astros use analyvtics to overfake nsin the 2017 Waorld Serie

(Qubnow 2018ab) Our efforts also do notamaximize expected wing Butave can To do

s0, we need to jointly model probabilities of all game events and base decisions on expec-
tations of those distributions. With adequate computing emerging, we can be first using
the probabilistic programming language Stan and parallel processing. To demonstrate
the concept, consider a probability model for decisions to steal second base, below, which
suggests teams are too conservative, leaving wins unclaimed. This model allows us to ask,

for example—should Sanchez steal against Sabathia? Or against Pineda?

1 Our current analyses do not optimize expected wins

Seven terabytes of uncompressed data generated per game overshadow the lack of situa
tional data needed for decision-making that maximizes expected utility. Consider that
pitchers, on average, only face10 percent of major league batters regardless of game state;
the reverse is true, too. Or when deciding whether a base runner should attempt to steal
against a specific pitcher and catcher in a state of play, say, we are lucky to have any data
Common analyses and heuristics for these situations are inadequate: they not only over-
fit the data (if any exist), but also offer no manner of estimating changes in probabilities

for maximizing expected utility (winning the game)

Accurately quantifying probabilities, and changes thereof, in a given context enable us to
answer counterfactuals, from which we can build strategies that maximize our objectives
(Parmigiani 2002). This approach is possible at scale using Stan (Carpenter et al. 2017)

[t's time to jointly model probabilities of all events.

2 Modeling probabilities for steal success illustrates a broader benefit

T'o see the potential of implementing probability models, let’s consider, again, the deci-

sion to steal bases, given a specific counterfactual:

In a game against New York Yankees, should Milwaukee Brewers's Lorenzo
Cain attempt to steal second base with no one else on base and two outs be
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda

as pitcher? What if against Sanchez and CC Sabathia as pitcher?

More specifically, how can we know the expectation that Cain’s attempt in each situation
increases the probability of expected runs that inning and by how much? Using Stan, I've
coded a generative model that along with play outcomes considers various information
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
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Expected change in runs in each scenario

Notably, we get these expectations without multiple trials of either scenario. More gen
erally, this model suggests that on average team managers are too conservative, leaving

runs unrealized:

— Indifferent

change in runs in an inning

I'he above is but one example of a more general approach that weighs probabilities of all
possible outcomes to maximize expected utility. With broad implementation—jointly

modeling the conditional probabilities of all relevant events—we can optimize decisions.

z—Pineda duo

ould be indif-

steals, saying go

The black band rer

variation across ma

At the intersection of indifference,

3 For value, compare an investment to free-agent costs

A fully-realized model will require significant effort from a team with deep experience in
baseball, generative modeling, and Stan. To get the talent, we should compare cost to ac
quiring expected wins from free-agents. Each win above a replacement-level player costs
about 10 million per year (Swartz 2017). As with free-agent value over replacement
player, game-time decisions informed from more accurate probabilities should add wins
over aseason. The scope of what we can answer, moreover, goes beyond in-game strategy
(player acquisitions, salary arbitration). More immediately, however, we can begin to im
plement this approach for specific events, with a scope closer to the example above, being

mindful that information learnt are conditional upon unmodeled context.

4  For accuracy, compare model results to betting market odds

Measuring performance of a fully-realized model may seem tricky: we only see the out
come of our decisions. But we can, say, compare the accuracy of our estimates against the

betting market where interested investors are trying to forecast game outcomes

5 Conclusion

['he mid-market Astros show teams can do more with information. Millions in addi
tional revenue—and more wins—await discovery through a joint, probability model of
all events from which we can maximize conditional expectations. Let’s discuss how to

draw the talent for a title worth our spend.

6  References

Scott Spencer / ()

8

26


https://ssp3nc3r.github.io
mailto:scott.spencer@columbia.edu

messages first, details follow

Get our audience(s) to pay attention to,
understand,
(be able to) act upon

\4

a maximum of messages,
given constraints.

Proposal for exploring game decisions informed by
expectations of joint probability distributions

Scott Powers
Scott Spencer

14 February 2019

Our game decisions based on current modeling do not maximize spend per win. We wit-
nessed the mid-market Astros use analytics to overtake us in the 2017 World Series
(Luhnow 2018ab). Our efforts also do not maximize expected wins. But we can. To do
so, we need to jointly model probabilities of all game events and base decisions on expec-
tations of those distributions. With adequate computing emerging, we can be first using
the probabilistic programming language Stan and parallel processing. To demonstrate
the concept, consider a probability model for decisions to steal second base, below, which
suggests teams are too conservative, leaving wins unclaimed. This model allows us to ask,

for example—should Sanchez steal against Sabathia? Or against Pineda?

1 Our current analyses do not optimize expected wins

Seven terabytes of uncompressed data generated per game overshadow the lack of situa-
tional data needed for decision-making that maximizes expected utility. Consider that
pitchers, on average, only face10 percent of major league batters regardless of game state;
the reverse is true, too. Or when deciding whether a base runner should attempt to steal
against a specific pitcher and catcher in a state of play, say, we are lucky to have any data.
Common analyses and heuristics for these situations are inadequate: they not only over-
fit the data (if any exist), but also offer no manner of estimating changes in probabilities

for maximizing expected utility (winning the game).

Accurately quantifying probabilities, and changes thereof, in a given context enable us to
answer counterfactuals, from which we can build strategies that maximize our objectives
(Parmigiani 2002). This approach is possible at scale using Stan (Carpenter et al. 2017).

It's time to jointly model probabilities of all events.

2 Modeling probabilities for steal success illustrates a broader benefit

To see the potential of implementing probability models, let’s consider, again, the deci-

sion to steal bases, given a specific counterfactual:

In a game against New York Yankees, should Milwaukee Brewers's Lorenzo
Cain attempt to steal second base with no one else on base and two outs be-
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda

as pitcher? What if against Sanchez and CC Sabathia as pitcher?

More specifically, how can we know the expectation that Cain’s attempt in each situation
increases the probability of expected runs that inning and by how much? Using Stan, I've
coded a generative model that along with play outcomes considers various information
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017

data, this model suggests Cain should steal against Pineda, not Sabathia:

vs. Pineda / Sanchez vs. Sabathia / Sanchez
- A -
03 -02 -01 00 01 03 -02 -01 00 01

Expected change in runs in each scenario

Notably, we get these expectations without multiple trials of either scenario. More gen-
erally, this model suggests that on average team managers are too conservative, leaving

runs unrealized:

o
3
a

Probability of steal attempt
o o
) @
& 3

— Indifferent
0.00- —

-0.4 -2 00 02
Expected change in runs in an inning
The above is but one example of a more general approach that weighs probabilities of all
possible outcomes to maximize expected utility. With broad implementation—jointly

modeling the conditional probabilities of all relevant events—we can optimize decisions.

Figure 1. Of the two scenarios, Cain
should only attempt to steal against the
Sanchez—Pineda duo.

Figure 2. When the change in expected
runs is zero, managers should be indif-
ferent to attempted steals, saying go
half the time.

The black band represents the range of
variation across managers’ decisions.
At the intersection of indifference,

3  Forvalue, compare an investment to free-agent costs

A fully-realized model will require significant effort from a team with deep experience in
baseball, generative modeling, and Stan. To get the talent, we should compare cost to ac-
quiring expected wins from free-agents. Each win above a replacement-level player costs
about 10 million per year (Swartz 2017). As with free-agent value over replacement
player, game-time decisions informed from more accurate probabilities should add wins
overaseason. The scope of what we can answer, moreover, goes beyond in-game strategy
(player acquisitions, salary arbitration). More immediately, however, we can begin to im-
plement this approach for specific events, with a scope closer to the example above, being

mindful that information learnt are conditional upon unmodeled context.

4  For accuracy, compare model results to betting market odds

Measuring performance of a fully-realized model may seem tricky: we only see the out-
come of our decisions. But we can, say, compare the accuracy of our estimates against the

betting market where interested investors are trying to forecast game outcomes.

5 Conclusion

The mid-market Astros show teams can do more with information. Millions in addi-
tional revenue—and more wins—await discovery through a joint, probability model of
all events from which we can maximize conditional expectations. Let’s discuss how to

draw the talent for a title worth our spend.
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data graphics as paragraphs about data — linking and

“Words, graphics, and tables are
different mechanisms with but a
single purpose—the presentation of
information. Why should the flow
of information be broken up into

different places on the page...?”

In a game against New York Yankees, should Milwat
Cain attempt to steal second base with no one else o1
fore the seventh inning, against Gary Sanchez as catch
as pitcher? What if against Sanchez and CC Sabathia

More specifically, how can we know the expectation that C
increases the probability of expected runs that inning and
coded a generative model that along with play outcomes
(runner foot-speed, catcher pop-time) and player chara
ness. With the model, we have an answer that also show

data, this model suggests Cain should steal against Pinedq
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The above is but one example of a more general approach
possible outcomes to maximize expected utility. With bj

modeling the conditional probabilities of all relevant even
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(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017

data, this model suggests Cain should steal against Pineda, not Sabathia:

vs. Pineda / Sanchez vs. Sabathia / Sanchez

_
—OI.3 —6.2 —OI.1 0.0 OT1 —6.3 —(3.2 —OI.1 0.0 011

Expected change in runs in each scenario

Notably, we get these expectations without multiple trials of either scenario. More gen-
erally, this model suggests that on average team managers are too conservative, leaving

runs unrealized:

1.00-
0.75-
0.50- 1

0.25-

Probability of steal attempt

— Indifferent
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The above is but one example of a more general approach that weighs probabilities of all

possible outcomes to maximize expected utility. With broad implementation—jointly

modeling the conditional probabilities of all relevant events—we can optimize decisions.

Figure 1. Of the two scenarios, Cain
should only attempt to steal against the
Sanchez—Pineda duo.

Figure 2. When the change in expected
runs is zero, managers should be indif-
ferent to attempted steals, saying go
half the time.

The black band represents the range of
variation across managers’ decisions.
At the intersection of indifference,

Scott Spencer / ) 2



https://ssp3nc3r.github.io
mailto:scott.spencer@columbia.edu

individual student example



from memo to proposal

N¥YE Analvtics

2021 February 2
To: Martha Norrick
Acting Chief Data Analytics Officer
Mayor'’s Office of Data Analytics
City of New York

To educate the public, let's explore why fatal collisions have increased during the pandemic.

It has been almost a year since the COVID-19 pandemic began, and there's an eerie quiet as
workers, students, and tourists stay home to comply with social distancing guidelines. Yet despite
emptier streets, New Yorkers are dying in car crashes at the highest rate since 2014, when we
announced Vision Zero (Berger & Jones, 2020). The public needs to know why this is happening.

Economic downturns are generally associated with lower traffic fatalities (Yannis et al., 2014), but
the COVID-19 recession is unprecedented. Preliminary research has shown that the rate of traffic
fatalities is increasing nationwide along with risky behaviors like speeding and drug use (Wagner
et al,, 2020). Let’s find out if this is also occurring in NYC.

Let's begin by analyzing NYPD collision reports from NYC OpenData, including the number of
collisions, injuries, and fatalities. By aggregating the contributing factors for each crash, we can
determine which driving behaviors are most likely to result in a fatal collision. Next, we will build
upon our work by visualizing the data in Tableau, enabling us to analyze trends over time and
location, and ultimately share our findings with the public.

New Yorkers are counting on us to keep them informed and keep them safe. Consistent with our
Vision Zero goal, we can use education and transparency to create a city where New Yorkers don't
die in car crashes.

Sincerely,
Joy Chen

h /[T ntlbts.gov/view 4

h : 1.0rg/10.1016/}.ss¢i.2013.10.017
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from memo to proposal

N¥YE Analvtics

Proposal to analyze driving behaviors contributing to fatal vehicle collisions during Covid-19

To: Martha Norrick, Acting Chief Data Analytics Officer, City of New York
From: Joy Chen, Applied Analytics Student, Columbia University

We've read the newspaper reports of a surge of speeding and drag racing (Meyer, 2020) as New
Yorkers die in car crashes at the highest rate since we announced Vision Zero (Berger & Jones,
2020). But we have data: we don't need to read the paper to know that the Covid-19 pandemic has
shifted the landscape of traffic safety in NYC. With data, we can compare the traffic fatality rate to
the pre-pandemic trend, allowing us to quantify how much the Covid-19 pandemic has set back our
progress towards our Vision Zero goal of reducing traffic fatalities in NYC. Further, we can
determine next steps for achieving Vision Zero by identifying driving behaviors that contribute to
fatal collisions and sharing our findings with the Vision Zero Task Force and the public.

1. There is little research on NYC traffic fatalities during Covid-19

Economic downturns are generally associated with lower traffic fatalities (Yannis et al., 2014), but
not this time. Preliminary research has shown an increase in traffic fatalities nationwide during
the Covid-19 pandemic (Wagner et al.,, 2020). Such research, however, is not specific to NYC and
may overlook the subtleties and uniqueness of our transit environment and culture. Fortunately,
the lack of NYC-specific research is not due to a dearth of data; all police-reported vehicle collisions
are compiled and publicly available on the NYC OpenData website, including every injury and
fatality.

2. Knowing the state of traffic safety can inform awareness and action

Using NYPD collision report data, we can calculate the number of collisions and fatalities in 2020
and compare against previous years. Next, we will build upon our work by visualizing the data in
Tableau, enabling us to analyze trends over time and location. We will also analyze the
contributing factors for each crash as reported by the NYPD, like speeding, drug use, improper lane
use, and weather conditions. By aggregating the contributing factors for each crash, we can
determine which driving behaviors are associated with the highest likelihood of fatality, given a
reported crash. We can then share our findings with the Vision Zero Task Force and the public so
everyone can be part of the solution.

To illustrate the potential of analyzing collision data, let's consider the rates of car crashes and
fatalities in the years after we announced Vision Zero. From 2014 to 2019, monthly crashes and
fatalities fluctuated within historical norms. Following the declaration of the Covid-19 pandemic in
March 2020, car crashes dropped to the lowest level we've seen in recent history. Yet despite the
lower number of crashes, the of collisions nearly doubled compared to previous years:

Monthly Crashes & Fatalities

40K

30K
20K
10K

) \/~‘\

0K Pandemic Declared

2014 2015 2016 2017 2018 2019 2020

Crash Count

This change in the landscape of traffic safety is a threat to our Vision Zero strategy: we cannot be
certain that our actions in the past will be effective at reducing traffic fatalities in the Covid-19
“new normal”. Therefore, we should use data to re-evaluate our approach. We can begin by
identifying which contributing factors are most likely to result in a fatal collision and
recommending that the Vision Zero Task Force focus its efforts on mitigating those factors.

3. For value, compare an investment to data scientist salaries

As a government organization, we must economize resources to maximize value while minimizing
the cost to taxpayers. We cannot assign a monetary value to human life or death, but we can
estimate the value of this project by its labor cost savings.

An in-depth and robust analysis would require us to hire experts in traffic safety, data analysis,
and data visualization. While salary data reflects a range of possible values, the average yearly
salary of data scientists, as sourced from Glassdoor (2021), would be a suitable starting point for our
comparison:

Data Scientist $113,156

Assuming a project length of 18 weeks, or one semester, a team of two data scientists would cost
the city over $100,000 in salaries alone. On the other hand, Columbia University students could
complete an initial analysis for free despite their lack of experience, resulting in nearly $100,000
labor cost savings for New Yorkers.

4. For assessment, determine if findings are statistically significant

Of course, our analysis cannot infer causality the way a randomized, controlled experiment can; we
cannot arbitrarily separate New Yorkers into a control group and experimental group where one
group is made to perform certain driving behaviors or actions while the other is not. We will
therefore focus on factors that explain changes in fatalities, or in the case of a linear regression
model, coefficients that are statistically significant.

5. Conclusion
Sometimes it feels as if the Covid-19 pandemic has placed us in new territory without a map, but

we are not lost. We can use data to identify which driving behaviors explain the recent increase in
fatalities, providing direction for the Vision Zero Task Force and the public to take the next step.
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When we read prose, we hear it... its variable
sound. Its sound with — pauses. With emphasis.
With, well, you know, a certain rhythm.

[t you start your project early, you'll have time to
let your revised draft cool. What seems good one

day often looks different the next.

revise

We write a first draft for ourselves: the drafts
thereafter increasingly for the reader.
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