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No one ever made a decision because 
of a number. They need a story. 


Daniel Kahneman, psychologist, 
behavioral economist, and author

The greatest value of a picture is 
when it forces us to notice what 
we never expected to see.


John W Tukey, mathematician

“Data! Data! Data!” he cried 
impatiently. “I can’t make 
bricks without clay.”


Sherlock Holmes by Sir 
Arthur Conan Doyle, author

course overview, learn to drive change using data visuals and narrative
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analytics project scope | research proposal guidelines — where audience is granting agencies

I. Title

II. Abstract

III. Project description


A. Results from prior agency support

B. Problem statement and significance

C. Introduction and background


• Relevant literature review

• Preliminary data

• Conceptual, empirical, or theoretical model

• Justification of approach or novel methods


D. Research plan

• Overview of research design

• Objectives or specific aims, hypotheses, and methods

• Analysis and expected results

• Timetable


E. Broader impacts

IV. References cited

V. Budget and budget justification
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I. Title

II. Abstract

III. Project description


A. Results from prior agency support

B. Problem statement and significance

C. Introduction and background


• Relevant literature review

• Preliminary data

• Conceptual, empirical, or theoretical model

• Justification of approach or novel methods


D. Research plan

• Overview of research design

• Objectives or specific aims, hypotheses, and methods

• Analysis and expected results

• Timetable


E. Broader impacts

IV. References cited

V. Budget and budget justification

Title | accurately represents the content and 
scope of the proposal.

analytics project scope | research proposal guidelines — where audience is granting agencies
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I. Title

II. Abstract

III. Project description


A. Results from prior agency support

B. Problem statement and significance

C. Introduction and background


• Relevant literature review

• Preliminary data

• Conceptual, empirical, or theoretical model

• Justification of approach or novel methods


D. Research plan

• Overview of research design

• Objectives or specific aims, hypotheses, and methods

• Analysis and expected results

• Timetable


E. Broader impacts

IV. References cited

V. Budget and budget justification

Abstract | frames the goals and scope of the 
study, briefly describes the methods, and 
presents the hypotheses and expected 
results or outputs.


Sets up proper expectations, so be careful to 
avoid misleading readers into thinking that 
the proposal addresses anything other than 
the actual research topic.


Try for no more than two short paragraphs.

analytics project scope | research proposal guidelines — where audience is granting agencies
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I. Title

II. Abstract

III. Project description


A. Results from prior agency support

B. Problem statement and significance

C. Introduction and background


• Relevant literature review

• Preliminary data

• Conceptual, empirical, or theoretical model

• Justification of approach or novel methods


D. Research plan

• Overview of research design

• Objectives or specific aims, hypotheses, and methods

• Analysis and expected results

• Timetable


E. Broader impacts

IV. References cited

V. Budget and budget justification

Significance | begins with the big picture 
and then funnels the reader through the 
hypotheses to the goals or specific aims of 
the research.

analytics project scope | research proposal guidelines — where audience is granting agencies
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I. Title

II. Abstract

III. Project description


A. Results from prior agency support

B. Problem statement and significance

C. Introduction and background


• Relevant literature review

• Preliminary data

• Conceptual, empirical, or theoretical model

• Justification of approach or novel methods


D. Research plan

• Overview of research design

• Objectives or specific aims, hypotheses, and methods

• Analysis and expected results

• Timetable


E. Broader impacts

IV. References cited

V. Budget and budget justification

Literature review | sets the stage for the 
proposal by discussing the most widely 
accepted or influential papers on the 
research.


The key is to be able to show where the 
proposed work would extend what has been 
done or how the proposed fills a gap or 
resolves uncertainty, etc.


If the background literature does not help 
you accomplish either of those two points, 
you should question why you have it at all.

analytics project scope | research proposal guidelines — where audience is granting agencies
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I. Title

II. Abstract

III. Project description


A. Results from prior agency support

B. Problem statement and significance

C. Introduction and background


• Relevant literature review

• Preliminary data

• Conceptual, empirical, or theoretical model

• Justification of approach or novel methods


D. Research plan

• Overview of research design

• Objectives or specific aims, hypotheses, and methods

• Analysis and expected results

• Timetable


E. Broader impacts

IV. References cited

V. Budget and budget justification

Preliminary data | can help establish 
credibility, likely success, or novelty of the 
proposal.


But avoid overstating the implications of the 
data or suggesting you’ve already solved the 
problem.

analytics project scope | research proposal guidelines — where audience is granting agencies
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I. Title

II. Abstract

III. Project description


A. Results from prior agency support

B. Problem statement and significance

C. Introduction and background


• Relevant literature review

• Preliminary data

• Conceptual, empirical, or theoretical model

• Justification of approach or novel methods


D. Research plan

• Overview of research design

• Objectives or specific aims, hypotheses, and methods

• Analysis and expected results

• Timetable


E. Broader impacts

IV. References cited

V. Budget and budget justification

Research plan | The goal is to keep the 
reader focused on the overall significance, 
objectives, specific aims, and hypotheses 
while providing important methodological, 
technological, and analytical details.


Contains the details of the implementation, 
analysis, and inferences of the study. 


Convince the reader that the project can be 
accomplished.

analytics project scope | research proposal guidelines — where audience is granting agencies
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I. Title

II. Abstract

III. Project description


A. Results from prior agency support

B. Problem statement and significance

C. Introduction and background


• Relevant literature review

• Preliminary data

• Conceptual, empirical, or theoretical model

• Justification of approach or novel methods


D. Research plan

• Overview of research design

• Objectives or specific aims, hypotheses, and methods

• Analysis and expected results

• Timetable


E. Broader impacts

IV. References cited

V. Budget and budget justification

Objectives, hypotheses, aims, methods | 
Objectives refer to broad, scientifically far-
reaching aspects of a study, while hypotheses 
refer to a more specific set of testable 
conjectures. Specific aims focus on a 
particular question or hypothesis and the 
methods needed and outputs expected to 
fulfill the aims.


Of note, these points will typically have 
already been briefly introduced earlier, e.g., 
in the abstract. Bring in more detail here.

analytics project scope | research proposal guidelines — where audience is granting agencies
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I. Title

II. Abstract

III. Project description


A. Results from prior agency support

B. Problem statement and significance

C. Introduction and background


• Relevant literature review

• Preliminary data

• Conceptual, empirical, or theoretical model

• Justification of approach or novel methods


D. Research plan

• Overview of research design

• Objectives or specific aims, hypotheses, and methods

• Analysis and expected results

• Timetable


E. Broader impacts

IV. References cited

V. Budget and budget justification

Analysis and expected results | If early 
data are available, show how you will 
analyze them to reach your objectives or 
test your hypotheses. 


If such data are unavailable, consider 
culling data from the literature to show 
how you expect the results to turn out and 
to show how you will analyze your data 
when they are available. 


Complete a table or diagram, or run 
statistical tests using the preliminary or 
"synthesized" data. This can be a good way 
to show how you would interpret the 
results of such data.

analytics project scope | research proposal guidelines — where audience is granting agencies
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our audiences | c-suite executives, general audiences, mixed audiences

Lead an organization’s data analytics 
strategy, driving data-related business 
changes to transform company into a 
more analytics-driven one.

Analytics 
Executives

Lead responses to changing 
circumstances; shapes products, sales 
strategies, and marketing ideas, 
collaborating across the company.

Marketing 
Executives

Leads management of company; 
responsible for maximizing company 
value, high-level decisions on policy 
and strategy; drives change.

Chief 
Executives

The most challenging audiences to 
understand and develop persuasive 
messages. 

General and 
Mixed Audiences

https://ssp3nc3r.github.io
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our audiences | c-suite executives, biases and guarding against them

Bias Bias
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affect heuristic

halo effect

groupthink

endowment effect

availability bias

anchoring bias

disaster neglect

self-interested bias

confirmation biasoverconfidence

loss aversion

sunk-cost fallacy

competitor neglect

Bias Bias
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our audiences | c-suite executives, biases and guarding against them

Present ideas from a 
neutral perspective. 
Becoming too emotional 
suggests bias.

Make analogies and 
examples comparable 
to the proposal.

Genuinely admit 
uncertainty in the 
proposal, and recognize 
multiple options.

Identify additional 
data that may 
provide new insight.

Consider 
multiple anchors 
in the proposal.

https://ssp3nc3r.github.io
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reminder on how we use examples 
to improve our own work
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learning from examples, don’t copy — generalize from examples, then apply those generalizations to your work

An active learner asks questions, considers alternatives, questions 
assumptions, and even questions the trustworthiness of the author 
or speaker. An active learner tries to generalize specific examples, 
and devise specific examples for generalities.


An active learner doesn’t passively sponge up information — that 
doesn’t work! — but uses the readings and lecturer’s argument as a 
springboard for critical thought and deep understanding.

— Scott Spencer, Data in Wonderland

https://ssp3nc3r.github.io
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data in narrative, proposal as a multi-level narrative — title, headings, body, captions

Proposal for exploring game decisions inIorPeG E\  
expectations of joint probability distributions 

To: Scott Powers,  Director of Quantitative Analysis, Los Angeles Dodgers 
From: Scott Spencer, Faculty and Lecturer, Columbia University 

14 February 2019 

Our game decisions based on current modeling do not maximize spend per win. We wit-
nessed the mid-market Astros use analytics to overtake us in the 2017 World Series 
(Luhnow 2018ab). Our efforts also do not maximize expected wins. But we can. To do 
so, we need to jointly model probabilities of all game events and base decisions on expec-
tations of those distributions. With adequate computing emerging, we can be first using 
the probabilistic programming language Stan and parallel processing. To demonstrate 
the concept, consider a probability model for decisions to steal second base, below, which 
suggests teams are too conservative, leaving wins unclaimed. This model allows us to ask, 
for example—should Sanchez steal against Sabathia? Or against Pineda? 

1 Our current analyses do not optimize expected wins 

Seven terabytes of uncompressed data generated per game overshadow the lack of situa-
tional data needed for decision-making that maximizes expected utility. Consider that 
pitchers, on average, only face10 percent of major league batters regardless of game state; 
the reverse is true, too. Or when deciding whether a base runner should attempt to steal 
against a specific pitcher and catcher in a state of play, say, we are lucky to have any data. 
Common analyses and heuristics for these situations are inadequate: they not only over-
fit the data (if any exist), but also offer no manner of estimating changes in probabilities 
for maximizing expected utility (winning the game). 

Accurately quantifying probabilities, and changes thereof, in a given context enable us to 
answer counterfactuals, from which we can build strategies that maximize our objectives 
(Parmigiani 2002). This approach is possible at scale using Stan (Carpenter et al. 2017). 
It’s time to jointly model probabilities of all events. 

2 Modeling probabilities for steal success illustrates a broader benefit 

To see the potential of implementing probability models, let’s consider, again, the deci-
sion to steal bases, given a specific counterfactual: 

PROPOSAL FOR EXPLORING GAME DECISIONS IN)OR0E' %< EXPECTATIONS OF JOINT PROBABILITY DISTRIBUTIONS  2 

In a game against New York Yankees, should Milwaukee Brewers’s Lorenzo 
Cain attempt to steal second base with no one else on base and two outs be-
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda 
as pitcher? What if against Sanchez and CC Sabathia as pitcher? 

More specifically, how can we know the expectation that Cain’s attempt in each situation 
increases the probability of expected runs that inning and by how much? Using Stan, I’ve 
coded a generative model that along with play outcomes considers various information 
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017 
data, this model suggests Cain should steal against Pineda, not Sabathia: 

Notably, we get these expectations without multiple trials of either scenario. More gen-
erally, this model suggests that on average team managers are too conservative, leaving 
runs unrealized: 

The above is but one example of a more general approach that weighs probabilities of all 
possible outcomes to maximize expected utility. With broad implementation—jointly 
modeling the conditional probabilities of all relevant events—we can optimize decisions. 

vs. Pineda / Sanchez vs. Sabathia / Sanchez
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Figure 1. Of the two scenarios, Cain 
should only attempt to steal against the 
Sanchez–Pineda duo. 

Figure 2. When the change in expected 
runs is zero, managers should be indif-
ferent to attempted steals, saying go 
half the time. 

The black band represents the range of 
variation across managers’ decisions. 
At the intersection of indifference, 
managers tend to say steal only 10 
percent of the time, leaving oppor-
tunity.  

PROPOSAL FOR EXPLORING GAME DECISIONS IN)OR0E' %< EXPECTATIONS OF JOINT PROBABILITY DISTRIBUTIONS  3 

3 For value, compare an investment to free-agent costs 

A fully-realized model will require significant effort from a team with deep experience in 
baseball, generative modeling, and Stan. To get the talent, we should compare cost to ac-
quiring expected wins from free-agents. Each win above a replacement-level player costs 
about 10 million per year (Swartz 2017). As with free-agent value over replacement 
player, game-time decisions informed from more accurate probabilities should add wins 
over a season. The scope of what we can answer, moreover, goes beyond in-game strategy 
(player acquisitions, salary arbitration). More immediately, however, we can begin to im-
plement this approach for specific events, with a scope closer to the example above, being 
mindful that information learnt are conditional upon unmodeled context. 

4 For accuracy, compare model results to betting market odds 

Measuring performance of a fully-realized model may seem tricky: we only see the out-
come of our decisions. But we can, say, compare the accuracy of our estimates against the 
betting market where interested investors are trying to forecast game outcomes. 

5 Conclusion 

The mid-market Astros show teams can do more with information. Millions in addi-
tional revenue—and more wins—await discovery through a joint, probability model of 
all events from which we can maximize conditional expectations. Let’s discuss how to 
draw the talent for a title worth our spend. 
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data in narrative, example tries to maximize messages within constraints of the communication

Proposal for exploring game decisions inIorPeG E\  
expectations of joint probability distributions 

To: Scott Powers,  Director of Quantitative Analysis, Los Angeles Dodgers 
From: Scott Spencer, Faculty and Lecturer, Columbia University 

14 February 2019 

Our game decisions based on current modeling do not maximize spend per win. We wit-
nessed the mid-market Astros use analytics to overtake us in the 2017 World Series 
(Luhnow 2018ab). Our efforts also do not maximize expected wins. But we can. To do 
so, we need to jointly model probabilities of all game events and base decisions on expec-
tations of those distributions. With adequate computing emerging, we can be first using 
the probabilistic programming language Stan and parallel processing. To demonstrate 
the concept, consider a probability model for decisions to steal second base, below, which 
suggests teams are too conservative, leaving wins unclaimed. This model allows us to ask, 
for example—should Sanchez steal against Sabathia? Or against Pineda? 

1 Our current analyses do not optimize expected wins 

Seven terabytes of uncompressed data generated per game overshadow the lack of situa-
tional data needed for decision-making that maximizes expected utility. Consider that 
pitchers, on average, only face10 percent of major league batters regardless of game state; 
the reverse is true, too. Or when deciding whether a base runner should attempt to steal 
against a specific pitcher and catcher in a state of play, say, we are lucky to have any data. 
Common analyses and heuristics for these situations are inadequate: they not only over-
fit the data (if any exist), but also offer no manner of estimating changes in probabilities 
for maximizing expected utility (winning the game). 

Accurately quantifying probabilities, and changes thereof, in a given context enable us to 
answer counterfactuals, from which we can build strategies that maximize our objectives 
(Parmigiani 2002). This approach is possible at scale using Stan (Carpenter et al. 2017). 
It’s time to jointly model probabilities of all events. 

2 Modeling probabilities for steal success illustrates a broader benefit 

To see the potential of implementing probability models, let’s consider, again, the deci-
sion to steal bases, given a specific counterfactual: 

PROPOSAL FOR EXPLORING GAME DECISIONS IN)OR0E' %< EXPECTATIONS OF JOINT PROBABILITY DISTRIBUTIONS  2 

In a game against New York Yankees, should Milwaukee Brewers’s Lorenzo 
Cain attempt to steal second base with no one else on base and two outs be-
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda 
as pitcher? What if against Sanchez and CC Sabathia as pitcher? 

More specifically, how can we know the expectation that Cain’s attempt in each situation 
increases the probability of expected runs that inning and by how much? Using Stan, I’ve 
coded a generative model that along with play outcomes considers various information 
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017 
data, this model suggests Cain should steal against Pineda, not Sabathia: 

Notably, we get these expectations without multiple trials of either scenario. More gen-
erally, this model suggests that on average team managers are too conservative, leaving 
runs unrealized: 

The above is but one example of a more general approach that weighs probabilities of all 
possible outcomes to maximize expected utility. With broad implementation—jointly 
modeling the conditional probabilities of all relevant events—we can optimize decisions. 

vs. Pineda / Sanchez vs. Sabathia / Sanchez
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Figure 1. Of the two scenarios, Cain 
should only attempt to steal against the 
Sanchez–Pineda duo. 

Figure 2. When the change in expected 
runs is zero, managers should be indif-
ferent to attempted steals, saying go 
half the time. 

The black band represents the range of 
variation across managers’ decisions. 
At the intersection of indifference, 
managers tend to say steal only 10 
percent of the time, leaving oppor-
tunity.  

PROPOSAL FOR EXPLORING GAME DECISIONS IN)OR0E' %< EXPECTATIONS OF JOINT PROBABILITY DISTRIBUTIONS  3 

3 For value, compare an investment to free-agent costs 

A fully-realized model will require significant effort from a team with deep experience in 
baseball, generative modeling, and Stan. To get the talent, we should compare cost to ac-
quiring expected wins from free-agents. Each win above a replacement-level player costs 
about 10 million per year (Swartz 2017). As with free-agent value over replacement 
player, game-time decisions informed from more accurate probabilities should add wins 
over a season. The scope of what we can answer, moreover, goes beyond in-game strategy 
(player acquisitions, salary arbitration). More immediately, however, we can begin to im-
plement this approach for specific events, with a scope closer to the example above, being 
mindful that information learnt are conditional upon unmodeled context. 

4 For accuracy, compare model results to betting market odds 

Measuring performance of a fully-realized model may seem tricky: we only see the out-
come of our decisions. But we can, say, compare the accuracy of our estimates against the 
betting market where interested investors are trying to forecast game outcomes. 

5 Conclusion 

The mid-market Astros show teams can do more with information. Millions in addi-
tional revenue—and more wins—await discovery through a joint, probability model of 
all events from which we can maximize conditional expectations. Let’s discuss how to 
draw the talent for a title worth our spend. 
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data in narrative, organized on a grid

“Orderliness adds credibility to the 

information and induces confidence. 

Information presented with clear and 

logically set out titles, subtitles, texts, 

illustrations and captions will not 

only be read more quickly and easily 

but the information will also be 

better understood.”

— Müller-Brockmann, Grid systems in graphic design

Proposal for exploring game decisions inIorPeG E\  
expectations of joint probability distributions 

To: Scott Powers,  Director of Quantitative Analysis, Los Angeles Dodgers 
From: Scott Spencer, Faculty and Lecturer, Columbia University 

14 February 2019 

Our game decisions based on current modeling do not maximize spend per win. We wit-
nessed the mid-market Astros use analytics to overtake us in the 2017 World Series 
(Luhnow 2018ab). Our efforts also do not maximize expected wins. But we can. To do 
so, we need to jointly model probabilities of all game events and base decisions on expec-
tations of those distributions. With adequate computing emerging, we can be first using 
the probabilistic programming language Stan and parallel processing. To demonstrate 
the concept, consider a probability model for decisions to steal second base, below, which 
suggests teams are too conservative, leaving wins unclaimed. This model allows us to ask, 
for example—should Sanchez steal against Sabathia? Or against Pineda? 

1 Our current analyses do not optimize expected wins 

Seven terabytes of uncompressed data generated per game overshadow the lack of situa-
tional data needed for decision-making that maximizes expected utility. Consider that 
pitchers, on average, only face10 percent of major league batters regardless of game state; 
the reverse is true, too. Or when deciding whether a base runner should attempt to steal 
against a specific pitcher and catcher in a state of play, say, we are lucky to have any data. 
Common analyses and heuristics for these situations are inadequate: they not only over-
fit the data (if any exist), but also offer no manner of estimating changes in probabilities 
for maximizing expected utility (winning the game). 

Accurately quantifying probabilities, and changes thereof, in a given context enable us to 
answer counterfactuals, from which we can build strategies that maximize our objectives 
(Parmigiani 2002). This approach is possible at scale using Stan (Carpenter et al. 2017). 
It’s time to jointly model probabilities of all events. 

2 Modeling probabilities for steal success illustrates a broader benefit 

To see the potential of implementing probability models, let’s consider, again, the deci-
sion to steal bases, given a specific counterfactual: 

PROPOSAL FOR EXPLORING GAME DECISIONS IN)OR0E' %< EXPECTATIONS OF JOINT PROBABILITY DISTRIBUTIONS  2 

In a game against New York Yankees, should Milwaukee Brewers’s Lorenzo 
Cain attempt to steal second base with no one else on base and two outs be-
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda 
as pitcher? What if against Sanchez and CC Sabathia as pitcher? 

More specifically, how can we know the expectation that Cain’s attempt in each situation 
increases the probability of expected runs that inning and by how much? Using Stan, I’ve 
coded a generative model that along with play outcomes considers various information 
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017 
data, this model suggests Cain should steal against Pineda, not Sabathia: 

Notably, we get these expectations without multiple trials of either scenario. More gen-
erally, this model suggests that on average team managers are too conservative, leaving 
runs unrealized: 

The above is but one example of a more general approach that weighs probabilities of all 
possible outcomes to maximize expected utility. With broad implementation—jointly 
modeling the conditional probabilities of all relevant events—we can optimize decisions. 
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−0.3 −0.2 −0.1 0.0 0.1 −0.3 −0.2 −0.1 0.0 0.1
Expected change in runs in each scenario

Indifferent

Opportunity?

0.00

0.25

0.50

0.75

1.00

−0.4 −0.2 0.0 0.2
Expected change in runs in an inning

Pr
ob

ab
ilit

y 
of

 s
te

al
 a

tte
m

pt

Figure 1. Of the two scenarios, Cain 
should only attempt to steal against the 
Sanchez–Pineda duo. 

Figure 2. When the change in expected 
runs is zero, managers should be indif-
ferent to attempted steals, saying go 
half the time. 

The black band represents the range of 
variation across managers’ decisions. 
At the intersection of indifference, 
managers tend to say steal only 10 
percent of the time, leaving oppor-
tunity.  

PROPOSAL FOR EXPLORING GAME DECISIONS IN)OR0E' %< EXPECTATIONS OF JOINT PROBABILITY DISTRIBUTIONS  3 

3 For value, compare an investment to free-agent costs 

A fully-realized model will require significant effort from a team with deep experience in 
baseball, generative modeling, and Stan. To get the talent, we should compare cost to ac-
quiring expected wins from free-agents. Each win above a replacement-level player costs 
about 10 million per year (Swartz 2017). As with free-agent value over replacement 
player, game-time decisions informed from more accurate probabilities should add wins 
over a season. The scope of what we can answer, moreover, goes beyond in-game strategy 
(player acquisitions, salary arbitration). More immediately, however, we can begin to im-
plement this approach for specific events, with a scope closer to the example above, being 
mindful that information learnt are conditional upon unmodeled context. 

4 For accuracy, compare model results to betting market odds 

Measuring performance of a fully-realized model may seem tricky: we only see the out-
come of our decisions. But we can, say, compare the accuracy of our estimates against the 
betting market where interested investors are trying to forecast game outcomes. 

5 Conclusion 

The mid-market Astros show teams can do more with information. Millions in addi-
tional revenue—and more wins—await discovery through a joint, probability model of 
all events from which we can maximize conditional expectations. Let’s discuss how to 
draw the talent for a title worth our spend. 
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data in narrative, applies typographic principles to separate hierarchies of information, improve readability

Proposal for exploring game decisions inIorPeG E\  
expectations of joint probability distributions 

To: Scott Powers,  Director of Quantitative Analysis, Los Angeles Dodgers 
From: Scott Spencer, Faculty and Lecturer, Columbia University 

14 February 2019 

Our game decisions based on current modeling do not maximize spend per win. We wit-
nessed the mid-market Astros use analytics to overtake us in the 2017 World Series 
(Luhnow 2018ab). Our efforts also do not maximize expected wins. But we can. To do 
so, we need to jointly model probabilities of all game events and base decisions on expec-
tations of those distributions. With adequate computing emerging, we can be first using 
the probabilistic programming language Stan and parallel processing. To demonstrate 
the concept, consider a probability model for decisions to steal second base, below, which 
suggests teams are too conservative, leaving wins unclaimed. This model allows us to ask, 
for example—should Sanchez steal against Sabathia? Or against Pineda? 

1 Our current analyses do not optimize expected wins 

Seven terabytes of uncompressed data generated per game overshadow the lack of situa-
tional data needed for decision-making that maximizes expected utility. Consider that 
pitchers, on average, only face10 percent of major league batters regardless of game state; 
the reverse is true, too. Or when deciding whether a base runner should attempt to steal 
against a specific pitcher and catcher in a state of play, say, we are lucky to have any data. 
Common analyses and heuristics for these situations are inadequate: they not only over-
fit the data (if any exist), but also offer no manner of estimating changes in probabilities 
for maximizing expected utility (winning the game). 

Accurately quantifying probabilities, and changes thereof, in a given context enable us to 
answer counterfactuals, from which we can build strategies that maximize our objectives 
(Parmigiani 2002). This approach is possible at scale using Stan (Carpenter et al. 2017). 
It’s time to jointly model probabilities of all events. 

2 Modeling probabilities for steal success illustrates a broader benefit 

To see the potential of implementing probability models, let’s consider, again, the deci-
sion to steal bases, given a specific counterfactual: 

PROPOSAL FOR EXPLORING GAME DECISIONS IN)OR0E' %< EXPECTATIONS OF JOINT PROBABILITY DISTRIBUTIONS  2 

In a game against New York Yankees, should Milwaukee Brewers’s Lorenzo 
Cain attempt to steal second base with no one else on base and two outs be-
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda 
as pitcher? What if against Sanchez and CC Sabathia as pitcher? 

More specifically, how can we know the expectation that Cain’s attempt in each situation 
increases the probability of expected runs that inning and by how much? Using Stan, I’ve 
coded a generative model that along with play outcomes considers various information 
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017 
data, this model suggests Cain should steal against Pineda, not Sabathia: 

Notably, we get these expectations without multiple trials of either scenario. More gen-
erally, this model suggests that on average team managers are too conservative, leaving 
runs unrealized: 

The above is but one example of a more general approach that weighs probabilities of all 
possible outcomes to maximize expected utility. With broad implementation—jointly 
modeling the conditional probabilities of all relevant events—we can optimize decisions. 
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Figure 1. Of the two scenarios, Cain 
should only attempt to steal against the 
Sanchez–Pineda duo. 

Figure 2. When the change in expected 
runs is zero, managers should be indif-
ferent to attempted steals, saying go 
half the time. 

The black band represents the range of 
variation across managers’ decisions. 
At the intersection of indifference, 
managers tend to say steal only 10 
percent of the time, leaving oppor-
tunity.  

PROPOSAL FOR EXPLORING GAME DECISIONS IN)OR0E' %< EXPECTATIONS OF JOINT PROBABILITY DISTRIBUTIONS  3 

3 For value, compare an investment to free-agent costs 

A fully-realized model will require significant effort from a team with deep experience in 
baseball, generative modeling, and Stan. To get the talent, we should compare cost to ac-
quiring expected wins from free-agents. Each win above a replacement-level player costs 
about 10 million per year (Swartz 2017). As with free-agent value over replacement 
player, game-time decisions informed from more accurate probabilities should add wins 
over a season. The scope of what we can answer, moreover, goes beyond in-game strategy 
(player acquisitions, salary arbitration). More immediately, however, we can begin to im-
plement this approach for specific events, with a scope closer to the example above, being 
mindful that information learnt are conditional upon unmodeled context. 

4 For accuracy, compare model results to betting market odds 

Measuring performance of a fully-realized model may seem tricky: we only see the out-
come of our decisions. But we can, say, compare the accuracy of our estimates against the 
betting market where interested investors are trying to forecast game outcomes. 

5 Conclusion 

The mid-market Astros show teams can do more with information. Millions in addi-
tional revenue—and more wins—await discovery through a joint, probability model of 
all events from which we can maximize conditional expectations. Let’s discuss how to 
draw the talent for a title worth our spend. 
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— Butterick, Matthew, Practical Typography

“Most readers are looking for reasons to stop reading. . . . Readers have other demands 

on their time. . . . The goal of most professional writing is persuasion, and attention is 

a prerequisite for persuasion. Good typography can help your reader devote less 

attention to the mechanics of reading and more attention to your message.”

Average line length: 84 characters with 
spaces. Butterick recommends 45-90.

Leading (line height): 145% of font size. 
Butterick recommends: 120-145% of font size.
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data in narrative, messages first, details follow

Proposal for exploring game decisions inIorPeG E\  
expectations of joint probability distributions 

To: Scott Powers,  Director of Quantitative Analysis, Los Angeles Dodgers 
From: Scott Spencer, Faculty and Lecturer, Columbia University 

14 February 2019 

Our game decisions based on current modeling do not maximize spend per win. We wit-
nessed the mid-market Astros use analytics to overtake us in the 2017 World Series 
(Luhnow 2018ab). Our efforts also do not maximize expected wins. But we can. To do 
so, we need to jointly model probabilities of all game events and base decisions on expec-
tations of those distributions. With adequate computing emerging, we can be first using 
the probabilistic programming language Stan and parallel processing. To demonstrate 
the concept, consider a probability model for decisions to steal second base, below, which 
suggests teams are too conservative, leaving wins unclaimed. This model allows us to ask, 
for example—should Sanchez steal against Sabathia? Or against Pineda? 

1 Our current analyses do not optimize expected wins 

Seven terabytes of uncompressed data generated per game overshadow the lack of situa-
tional data needed for decision-making that maximizes expected utility. Consider that 
pitchers, on average, only face10 percent of major league batters regardless of game state; 
the reverse is true, too. Or when deciding whether a base runner should attempt to steal 
against a specific pitcher and catcher in a state of play, say, we are lucky to have any data. 
Common analyses and heuristics for these situations are inadequate: they not only over-
fit the data (if any exist), but also offer no manner of estimating changes in probabilities 
for maximizing expected utility (winning the game). 

Accurately quantifying probabilities, and changes thereof, in a given context enable us to 
answer counterfactuals, from which we can build strategies that maximize our objectives 
(Parmigiani 2002). This approach is possible at scale using Stan (Carpenter et al. 2017). 
It’s time to jointly model probabilities of all events. 

2 Modeling probabilities for steal success illustrates a broader benefit 

To see the potential of implementing probability models, let’s consider, again, the deci-
sion to steal bases, given a specific counterfactual: 

PROPOSAL FOR EXPLORING GAME DECISIONS IN)OR0E' %< EXPECTATIONS OF JOINT PROBABILITY DISTRIBUTIONS  2 

In a game against New York Yankees, should Milwaukee Brewers’s Lorenzo 
Cain attempt to steal second base with no one else on base and two outs be-
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda 
as pitcher? What if against Sanchez and CC Sabathia as pitcher? 

More specifically, how can we know the expectation that Cain’s attempt in each situation 
increases the probability of expected runs that inning and by how much? Using Stan, I’ve 
coded a generative model that along with play outcomes considers various information 
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017 
data, this model suggests Cain should steal against Pineda, not Sabathia: 

Notably, we get these expectations without multiple trials of either scenario. More gen-
erally, this model suggests that on average team managers are too conservative, leaving 
runs unrealized: 

The above is but one example of a more general approach that weighs probabilities of all 
possible outcomes to maximize expected utility. With broad implementation—jointly 
modeling the conditional probabilities of all relevant events—we can optimize decisions. 
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Figure 1. Of the two scenarios, Cain 
should only attempt to steal against the 
Sanchez–Pineda duo. 

Figure 2. When the change in expected 
runs is zero, managers should be indif-
ferent to attempted steals, saying go 
half the time. 

The black band represents the range of 
variation across managers’ decisions. 
At the intersection of indifference, 
managers tend to say steal only 10 
percent of the time, leaving oppor-
tunity.  
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3 For value, compare an investment to free-agent costs 

A fully-realized model will require significant effort from a team with deep experience in 
baseball, generative modeling, and Stan. To get the talent, we should compare cost to ac-
quiring expected wins from free-agents. Each win above a replacement-level player costs 
about 10 million per year (Swartz 2017). As with free-agent value over replacement 
player, game-time decisions informed from more accurate probabilities should add wins 
over a season. The scope of what we can answer, moreover, goes beyond in-game strategy 
(player acquisitions, salary arbitration). More immediately, however, we can begin to im-
plement this approach for specific events, with a scope closer to the example above, being 
mindful that information learnt are conditional upon unmodeled context. 

4 For accuracy, compare model results to betting market odds 

Measuring performance of a fully-realized model may seem tricky: we only see the out-
come of our decisions. But we can, say, compare the accuracy of our estimates against the 
betting market where interested investors are trying to forecast game outcomes. 

5 Conclusion 

The mid-market Astros show teams can do more with information. Millions in addi-
tional revenue—and more wins—await discovery through a joint, probability model of 
all events from which we can maximize conditional expectations. Let’s discuss how to 
draw the talent for a title worth our spend. 
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— Doumont, Trees, Maps, Theorems

Get our audience(s) to pay attention to,

understand,

(be able to) act upon

a maximum of messages,

given constraints.
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PROPOSAL FOR EXPLORING GAME DECISIONS IN)OR0E' %< EXPECTATIONS OF JOINT PROBABILITY DISTRIBUTIONS  2 

In a game against New York Yankees, should Milwaukee Brewers’s Lorenzo 
Cain attempt to steal second base with no one else on base and two outs be-
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda 
as pitcher? What if against Sanchez and CC Sabathia as pitcher? 

More specifically, how can we know the expectation that Cain’s attempt in each situation 
increases the probability of expected runs that inning and by how much? Using Stan, I’ve 
coded a generative model that along with play outcomes considers various information 
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017 
data, this model suggests Cain should steal against Pineda, not Sabathia: 

Notably, we get these expectations without multiple trials of either scenario. More gen-
erally, this model suggests that on average team managers are too conservative, leaving 
runs unrealized: 

The above is but one example of a more general approach that weighs probabilities of all 
possible outcomes to maximize expected utility. With broad implementation—jointly 
modeling the conditional probabilities of all relevant events—we can optimize decisions. 
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Figure 1. Of the two scenarios, Cain 
should only attempt to steal against the 
Sanchez–Pineda duo. 

Figure 2. When the change in expected 
runs is zero, managers should be indif-
ferent to attempted steals, saying go 
half the time. 

The black band represents the range of 
variation across managers’ decisions. 
At the intersection of indifference, 
managers tend to say steal only 10 
percent of the time, leaving oppor-
tunity.  
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data in narrative, data graphics as paragraphs about data — linking narrative and data

“Words, graphics, and tables are 

different mechanisms with but a 

single purpose—the presentation of 

information. Why should the flow 

of information be broken up into 

different places on the page…?”

— Edward Tufte, The Visual 
Display of Quantitative Information

PROPOSAL FOR EXPLORING GAME DECISIONS IN)OR0E' %< EXPECTATIONS OF JOINT PROBABILITY DISTRIBUTIONS  2 

In a game against New York Yankees, should Milwaukee Brewers’s Lorenzo 
Cain attempt to steal second base with no one else on base and two outs be-
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda 
as pitcher? What if against Sanchez and CC Sabathia as pitcher? 

More specifically, how can we know the expectation that Cain’s attempt in each situation 
increases the probability of expected runs that inning and by how much? Using Stan, I’ve 
coded a generative model that along with play outcomes considers various information 
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017 
data, this model suggests Cain should steal against Pineda, not Sabathia: 

Notably, we get these expectations without multiple trials of either scenario. More gen-
erally, this model suggests that on average team managers are too conservative, leaving 
runs unrealized: 

The above is but one example of a more general approach that weighs probabilities of all 
possible outcomes to maximize expected utility. With broad implementation—jointly 
modeling the conditional probabilities of all relevant events—we can optimize decisions. 

vs. Pineda / Sanchez vs. Sabathia / Sanchez
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Figure 1. Of the two scenarios, Cain 
should only attempt to steal against the 
Sanchez–Pineda duo. 

Figure 2. When the change in expected 
runs is zero, managers should be indif-
ferent to attempted steals, saying go 
half the time. 

The black band represents the range of 
variation across managers’ decisions. 
At the intersection of indifference, 
managers tend to say steal only 10 
percent of the time, leaving oppor-
tunity.  
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individual student example, from memo to proposal
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individual student example, from memo to proposal
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̝
̝
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³ĳØ ÎėĎİôĈØÔ ³ĐÔ İńÍĈôÎĈŞ ³ŗ³ôĈ³ÍĈØ ėĐ ĿñØ Z§� `İØĐ"³Ŀ³ ŘØÍķôĿØ˨ ôĐÎĈńÔôĐì ØŗØĳŞ ôĐāńĳŞ ³ĐÔ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝
ë³Ŀ³ĈôĿŞ˧̝̝
̝
̝
˂˧ PĐėŘôĐì̜ĿñØ̜ķĿ³ĿØ̜ėë̜Ŀĳ³ëëôÎ̜ķ³ëØĿŞ̜Î³Đ̜ôĐëėĳĎ̜³Ř³ĳØĐØķķ̜³ĐÔ̜³ÎĿôėĐ̝
̝
�ķôĐì Z§y" ÎėĈĈôķôėĐ ĳØİėĳĿ Ô³Ŀ³˨ ŘØ Î³Đ Î³ĈÎńĈ³ĿØ ĿñØ ĐńĎÍØĳ ėë ÎėĈĈôķôėĐķ ³ĐÔ ë³Ŀ³ĈôĿôØķ ôĐ ˂ˀ˂ˀ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝
³ĐÔ ÎėĎİ³ĳØ ³ì³ôĐķĿ İĳØŗôėńķ ŞØ³ĳķ˧ ZØŝĿ˨ ŘØ ŘôĈĈ ÍńôĈÔ ńİėĐ ėńĳ Řėĳą ÍŞ ŗôķń³ĈôŦôĐì ĿñØ Ô³Ŀ³ ôĐ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝ ̝
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ØŗØĳŞėĐØ̜Î³Đ̜ÍØ̜İ³ĳĿ̜ėë̜ĿñØ̜ķėĈńĿôėĐ˧̝
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revise

When we read prose, we hear it... it’s variable 
sound. It’s sound with — pauses. With emphasis. 
With, well, you know, a certain rhythm.
— Richard Goodman

If you start your project early, you’ll have time to 
let your revised draft cool. What seems good one 
day often looks different the next.
— Wayne Booth

We write a first draft for ourselves; the drafts 
thereafter increasingly for the reader.

— Joseph Williams

https://ssp3nc3r.github.io
mailto:scott.spencer@columbia.edu
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