Storytelling with data

10 | Technologies and tools of interactive data-driven, visual design

course overview, learn to drive change using data visuals and narrative

general course deliverable timeline

Individual Work

Group work
For building graphics and narrative into interactive communications
 and written narrative techniques

into interactive communications

Homework graphics

Homework 2 graphics

Homework 3 writing

| Homework 4 |
| :---: | :---: | :---: | :---: |
| graphics |
| 10% |$|$| | Dec 11 |
| :---: | :---: |
| 15% | |

Dec 13

Multimodal communication
review of graphics practice
open-source technology stack for interactive, data-driven graphics
interactive technology stack, components and relationships - click a technology below to learn more
browser
event
listeners
DOM
html
css
grid
svg
canvas

js	scrollama.js	r2d3
d3.js	htmlwidgets	
plotly.js	plotly	
p5.js	crosstalk	
react.js	ggiraph	
jQuery.js	DT	
DataTables.js	sparkline	
three.js	threejs	
\ldots	rayshader	
		100s more \ldots

interactive technology stack, browsers parse various code to render content and respond to actions

```
browser
browser
```


event
listeners
DOM
html
css
grid
svg
canvas

R
ggplot2 knitr r markdown
flexdashboard
rolldown
shiny
r2d3
htmlwidgets
plotly
crosstalk
ggiraph
DT
sparkline
threejs
rayshader
100s more
interactive technology stack, actions trigger events, for which page elements can be bound to listen

interactive technology stack, a web page includes several languages, each has a purpose

web page structure

(Interactive) web pages all begin and end with <html> and </html> respectively. contain a head and body. Content between <body> and </body> is shown inside the main browser window Before the <body> element you will often see a <head> element. This contains information about the page, rather than infor-
mation that is shown within the main part of the browser window. You will usually find a <title> element and <script> (not shown below) element(s) inside the <head> element Notice how tag enclosures create a tree-like structure we can traverse - that's the Document Object Model, or DOM.

```
<html>
    <head>
    <title>This is the Title of the Page</title>
</head>
<body>
    <h1>This is in the Body of the Page</h1>
        <p>Anything within the body of a web page is
        displayed in the main browser window.</p>
    </body>
</html>
```

```
browser
```

R
event
listeners
DOM

grid
SVg
canvas
ggplot2
knitr
r markdown
flexdashboard
rolldown
shiny
r2d3
htmlwidgets
plotly
crosstalk
ggiraph
-DT
sparkline
threejs
rayshader
interactive technology stack, place content in html elements, a content layer

html elements

Added to the content of a page to describe its structure. An element consists of an opening and closing tag and its content. Opening tags can carry attributes.

The <p></p> below instructs the browser to structure the content as a paragraph. There are many pre-defined tag types and attributes, and we can define our own.

browser

```
event
```

event
listeners
listeners
DOM

```
DOM
```


html

sVg
canvas
interactive technology stack, style the html elements using css, a presentation layer

CSS rules

Indicates how the contents of one or more elements should be displayed in the browser. Each rule has a selector and a declaration block. The selector indicates to which element(s) the rule applies. Each declaration
block specifies one or more properties and corresponding values.Below, applying the class .cycling_team to a tag as an attribute, it will color the text a pink hue. CSS rules are specified within <style> tags.

R

event	
listeners	ggplot2
DOM	knitr
html markdown	
css	flexdashboard

grid
svg
canvas

scrollama.js	r2d3
d3.js	htmlwidgets
plotly.js	plotly
p5.js	crosstalk
react.js	gsiraph
jQuery.js	DT
DataTables.js	sparkline
three.js	threejs
...	rayshader
	100s more ...

interactive technology stack, organize the html elements using CSS GRID, a presentation layer

CSS grid

We've discussed and practiced using grids earlier in the semester to help us organize text and data graphics for memos, proposals, and information graphics. The html language includes grids we can specify using tags. Below, we define a class . gridlayout and in

WE PLACE OUR CLASSES FOR THE GRI GETWEENTHETWO CSS <Style> TAGS.

.gridlayout \{
display: grid;
grid-template-columns: 1fr 1fr; grid-template-rows: 5rem 5rem; gap: 5px
\}
item \{
background: lightgray
text-align: center
\}
.area \{
grid-column: 1 / 3
grid-row: 1 / 3;
background: lightyellow text-align: center
\}
that specify \{display: grid; \} and related properties. Then, we use our class attributes in divider tags <div></div> to format the content. The example below displays a 2×3 grid of cells, each with a size specified and placed in row major order.

TO ADD CONTENT, WE PLACE OUR CONTENT BETWEEN <div>
AGS, AND FORMAT USING OUR CLASSES WE DEFINED.

$$
\begin{aligned}
& \text { TO ADD CONTENT, WE PLACE OUR CONTENT BETWEN } \text { TAG, AN FORMAT USIIG OUR CLASSES WEDEFINED. } \\
& \hline \text { <div class="gridlayout"> } \\
& \text { <div class="area"></div> } \\
& \text { <div class="item"></div> } \\
& \text { <div class="item"></div> }
\end{aligned}
$$

browser
R

event
listeners
DOM

htmi

grid
sVg
canvas

jscrollama.js	r2d3
d3.js	htmlwidgets
plotly。js	plotly
p5.js	crosstalk
react.js	ggiraph
jQuery。js	DT
DataTables.js	sparkline
three.js	threejs
\ldots	rayshader
	loos more...

ggplot2

knitr

r markdown
flexdashboard rolldown

shiny

100s more

interactive technology stack, draw shapes within svg tags, a content layer

svg

Scalable vector graphics - svg - are humanreadable descriptions of shapes or paths that the browser can display. As we've discussed, enlarging vector graphics, unlike raster-based graphics, will not reduce resolution. Together these paths and shapes comprise a graphic.

We put them in the html document body between svg <svg> and </svg> tags. Shapes I commonly use include the circle <circle> rectangle <rect>, text <text>, path <path> and group $\langle g\rangle$. We can edit vector graphic shapes using software like Adobe Illustrator or Inkscape, too.

browser

event

listeners
DOM

html

cSS
SVg
canvas

R

ggplot2

knitr
r markdown \longrightarrow
flexdashboard
rolldown

interactive technology stack, draw shapes within svg tags, a content layer

svg

Scalable vector graphics - svg - are humanreadable descriptions of shapes or paths that the browser can display. As we've discussed, enlarging vector graphics, unlike raster-based graphics, will not reduce resolution. Together these paths and shapes comprise a graphic.

We put them in the html document body between svg <svg> and </svg> tags. Shapes I commonly use include the circle <circle>, rectangle <rect>, text <text>, path <path> and group $\langle g\rangle$. We can edit vector graphic shapes using software like Adobe Illustrator or Inkscape, too.

$\xrightarrow{\text { browser coordinates increase to the right }}$

other common shape attributes
stroke
stroke-width
stroke-opacity
fill
fill-color
fill-opacity
browser
event
listeners
DOM

html

CSS
sVg
canvas

Iscrollama	r2d3
d3 is	htmlwidge
10	plotly
p5.js	crosstalk
react.js	ggiraph
jQuery.js	-DT
DataTables.js	sparkline
three.is	threejs
	rayshader
	100s more

R
ggplot2
knitr
r markdown \longrightarrow
flexdashboard
rolldown
shiny

100s more
interactive technology stack, draw shapes within svg tags, a content layer

svg

Scalable vector graphics - svg - are humanreadable descriptions of shapes or paths that the browser can display. As we've discussed, enlarging vector graphics, unlike raster-based graphics, will not reduce resolution. Together these paths and shapes comprise a graphic.

We put them in the html document body between svg <svg> and </svg> tags. Shapes I commonly use include the circle <circle>, rectangle <rect>, text <text>, path <path>, and group <g>. We can edit vector graphic shapes using software like Adobe Illustrator or Inkscape, too.

COMMAND	syntax	MEANING
move to	Mx, y	location coordinate x, y where the drawing starts.
line to	Lx,y	draw straight path from previous coordinate x, y to this coordinate x, y.
curve to	Cx,y x,y x,y	draw curve path from previous coordinate x, y using two control points x, y and x, y to this coordinate x, y

browser
event
listeners
DOM
html
CSS

SVg
canvas

ggplot2 knitr r markdown flexdashboard rolldown
shiny

r2d3

htmlwidgets
plotly
rosstalk
ggiraph
DT
snarkline
threejs

interactive technology stack, draw pixels within canvas tags, a content layer

canvas

When performance drawing svg shapes becomes an issue-which may occur on slower computers with 1,000 to 10,000 shapes, more with today's computers-we gain performance by switching to raster graphics. For raster graphics, we draw pixels on canvas,
which we specify within html using the <canvas></canvas> tag. From pixels, we cannot select shapes or paths like we can with svg graphics, and resolution drops upon zooming into the canvas. To edit rasters, were better off using something like Photoshop.

browser

event
listeners
DOM

html
grid
canvas

R

ggplot2

knitr
r markdown
flexdashboard rolldown
shiny

r2d3

htmlwidgets plotly
crosstalk
ggiranh DT
sparkline
threejs
rayshader
interactive technology stack, respond to events by changing content or style with js, a behavior layer

JavaScript

We can bind elements to events that, upon happening, trigger javascript code, which in turn can modify content: html elements and attributes, svg or canvas, or css styles. Really it can modify anything in the DOM. As with R packages that abstract and ease our application
of specialized functionality, easing the burden of writing code, many javascript libraries are available to do the same. Those listed to the right are particularly important for interactive data visualization, but many more not listed are also available.
browser
event
event
listeners
DOM
html
CSS
sVg
canvas

js

ggplot2
knitr
r markdown \langle
flexdashboard
rolldown
shiny

r2d3

htmlwidgets
plotly
crosstalk
ggiranh
DT
sparkline
threejs
rayshader
content creation for this
interactive technology stack

tools for interactive content, several R packages transform ggplot2 into interactive graphics

ggplot2

The grammar of graphics - implemented in
R as ggplot2 - is among the most powerful coding libraries for creating static graphics. We've already seen how to use a complementary package with ggplot2 to add animation:
gganimate, a grammar of animated graphics. With similar complementary packages, we can specify interactivity. Let's see a static version of a class example, the 30 baseball outfields, then make it interactive using ggiraph

30 baseball outfields - static version

browser
event
listeners

DOM
html
CSS
grid
sVg
canvas

scrollama.js	r2d3
d3.js	htmlwidgets
plotly。js	plotly
p5.js	crosstalk
react.js	ggiraph
jQuery。js	DT
DataTables.js	sparkline
three.js	threejs
\ldots	rayshader
	loos more...

ggplot2

\qquad
flexdashboard
rolldown
shiny

100s more
tools for interactive content, several R packages transform ggplot2 into interactive graphics

tools for interactive content, several R packages transform ggplot2 into interactive graphics

ggplot2 + ggiraph

The grammar of graphics
R as ggplot2 - is among the most powerful coding libraries for creating static graphics. We've already seen how to use a complemen-
tary package with ggplot2 to add animation:

```
gs_boundaries
ggplot() +
coord_equal()
geom_path_interactive(
    data = subset
        fields,
        is_infield == FALSE)
    mapping= aes
        x = xsh,
            y = ysh,
            tooltip = id
            data_id = id
            data_id = id
        color = '#000000',
            alpha = 0.5)
    geom_polygon(
            data = subset
            fields,
            is_infield == TRUE)
    mapping = aes(
            x = xsh,
            y = ysh,
            group = id),
    fill = '#FAD9B4',
girafe(
code = print(gg_boundaries)
    code = print(ss
    options = list(
        css = 'stroke-width:3;'),
        opts_hover_inv(
        css = 'stroke-opacity:0.1;')
),
```

gganimate, a grammar of animated graphics.
With similar complementary packages, we can
specify interactivity. Let's see a static version of
a class example, the 30 baseball outfields, then
make it interactive using ggiraph.

30 baseball outfields - an interactive version

browser
event
listeners
DOM
html
css
grid
svg
canvas
js $\begin{aligned} & \text { scrollama.js } \\ & d 3 . j s, \\ & p l o t l y . j s \\ & p 5 . j s\end{aligned}$
react.js
jQuery.js
DataTables.js
three.js

ggplot2

r markdown $<$
flexdashboard
rolldown
shiny
r2d3
htmlwidgets

plotly

crosstalk

ggiraph

-DT

sparkline
threejs
rayshader
100s more
tools for interactive content, several R packages transform ggplot2 into interactive graphics

tools for interactive content, several R packages transform ggplot2 into interactive graphics

tools for interactive content, plotly is a charting library that can bind with other htmlwidgets

tools for interactive content, plot l y is a charting library that can bind with other htmlwidgets

tools for interactive content, web application tools are more complex but allow more sophisticated interactions

ggplot2 + shiny + ...

Shiny is for developing web applications. This means it runs on a web server to enable user interface widgets on a webpage. Further, it requires linking to an active \mathbf{R} session. Thus, unlike the previous software, we cannot share a single, standalone html file. The closest we

$\underbrace{\text { ation }}_{\text {Antion }}$		Single checkbox		$\begin{aligned} & \text { Checkbox group } \\ & \text { © Choice } 1 \\ & \text { Choice } 2 \end{aligned}$
\%		${ }^{1015}$		
				min
∞				-
		Date range	zerema	fil mot
-		c.anmex		mu
\pm		$1{ }^{\text {a }}$		
				0
Numerici nout				Select box Choice
退				amper
${ }^{1012}$				\%
sider				Toetiout
	8	Sillerane		Trampux
1050		${ }^{11235}$		(11) 4
mome				mom

browser
event
listeners
DOM
$\left(\begin{array}{l}\text { html } \\ \text { css } \\ \text { grid } \\ \text { svg }\end{array}\right.$
canvas

R
get is to share an r markdown file with shiny code that someone can open in RStudio and click "run" to start a server. Below are examples of various widgets we can use to create these interactive, web applications.

tools for interactive content, web application tools are more complex but allow more sophisticated interactions
$R+r 2 d 3+d 3 . j s$
We can also pass data objects directly from an R environment to the industry standard d3 javascript library using the R package r 2 d 3 . This allows us to combine the strengths and flexibility of both languages.

R markdown partial file, toy example

```{r} library(r2d3) bars <- c(10, 20, 30) . `{d3 data = bars} svg.selectAll('rect') .data(data) .enter() .append('rect') .attr('width', function(d) { return d * 10; }) .attr('height', '20px') .attr('y', function(d, i) { return i * 22; }) .attr('fill', 'orange');```

Resulting svg embedded in knitted html file

<svg $\ldots$...>
<style ...></style>
<rect width="100" height="20px" $y=" 0 "$
fill="orange"></rect>
<rect width="200" height="20px" $y=" 22 "$
fill="orange"></rect>
<rect width "300" height="20px" $y=" 44 "$
fill="orange"></rect>
</svg>

We can either run the d3 script directly from $R$, or we can embed the d 3 script within an R markdown document as a d3 code chunk in whatever your choice of R markdown format: html document, distill, flex dashboard,
browser
event
listeners
DOM

https://rstudio.github.io/r2d3/


R
ggplot2
knitr
r markdown
flexdashboard rolldown
shiny
r2d3
htmlwidgets
plotly
crosstalk
ggiraph
DT
sparkline
threejs
rayshader
organizing interactive graphics
with web technologies - (for dashboards)
tools for interactive content, example - creating dashboards

## knitr + rmarkdown + flexdashboard

We can organize various widgets and enable their communication through web technologies, all placed inside an html file. Perhaps my favorite way to bring these technologies together is using $\mathbf{r}$ markdown templates like flexdashboard that knitr and RStudio uses
to weave together text, image, code and results. Along with markdown templates, we can roll our own with css grid, adding code chunks between <div class=""> and </div> where we define our own css classes. Here's a screenshot of an example below:

tools for interactive content, example - creating dashboards

## knitr + rmarkdown + css grid + html

We can organize various widgets and enable their communication through web technologies, all placed inside an html file. Perhaps my favorite way to bring these technologies together is using $\mathbf{r}$ markdown templates like flexdashboard that knitr and RStudio uses


Along with markdown templates, we can roll our own with css grid, adding code chunks between <div class=""> and </div> where we define our own css classes. Here's a screenshot of an example below:

## browser

R

ggplot2
knitr
r markdown
flexdashboard rolldown
shiny
r2d3
htmlwidgets plotly
crosstalk
ggiraph
DT
sparkline
threejs
rayshader
visual narrative flow


For a vehicle dashboard, who's its audience? What's its purpose? Needs words? - Audience and purpose drive design.

An issue of communication is related to storytelling ability. Dashboards are increasingly used for decision making and communication across contexts: top-down, within departments, and across the organization. Dashboards that capture only the data and not the semantics of the data, or what was done in response to the data, can be insufficient for communication purposes. In BI, people often take screenshots of dashboards and put them into slide presentations in order to annotate them with contextual information, suggesting a need for more powerful storytelling features.

visual narrative flow $\mid$ the congruence between flow-factors, i.e., 1) the way a reader navigates the story, 2) the visual components of the story, and 3) the type of visual feedback the reader receives; along with the nature of the data and facts that the author wants to communicate.

button

scroll

slider

design space for flow factors, navigation input • level of control • navigation progress



hybrid

equal

figure

annotated

linear

linear skip

tree/graph

design space for flow factors, taxonomies like theirs can be helpful in seeing many example variations of these techniques


## Teaching Bar Charts through Data Visualization

showing the raw data

Data enables us to better understand the world around us.

Take this list of a few characters from the TV show, The Simpsons. It includes their names, genders, and their ages.

Let's start with just the 5 main Simpson family characters.

	Gender	Adult
	Lisa	F
	M	N
Bart	M	N
	Homer	F
	Marge	Y
		F

But they would limit the more advanced interactions such as drill down/up or filtering.

They felt that all the data needed to tell the story should be displayed clearly in the report without the need to explore the data further.
Thus authors feel business stories should be mostly author-driven and constraint, known to work best when the goal is storytelling or
minimal example - interactive, exploratory communication for Lyft's marketing executive
minimal example, for what things are a marketing executive responsible?


## minimal example, for what things are a marketing executive responsible?



Data drives marketing, can reveal biases

This marketing director knows that marketing is data-driven Further "Data can often show the basis for our biases and intuition.'

## DATA S THE NEW OLL

 DIRTY, MISUNDERSTOOD, POLLUTING THE WORLD \& PULLED FROM ALL. THE WRONG PLACES.Limitations in data need to be understood addressed

He also understands issues with use of data: Sources of unique data can be limited. Data is often corrupted, unhygienic, or mistransformed when converting to information.

Data is often guesstimated, panel-skewed inaccurate, and not proven, but at the same time "treated as gospel"

Measured data is only part of the story; things that go unmeasured are important and can change what the total information mean from a business standpoint.

Use of data is about truth and trust, requires openness about source and
methodology

The debate about the use of data in marketing and communications is really a debate about truth and trust, the two biggest issues in the world today.'
minimal example, what's the background of the head marketing executive for bikes at Lyft (CitiBike)?

## (2)

## Azmat Ali • 3rd in

Head of Rider Product Marketing at Lyft
San Diego, California, United States • 500+ connections Contact info

## About

Results driven executive with over 25 years experience in leading start up, high growth and mature organizations through rapid growth and change worldwide. Consistently successful in identifying and developing growth opportunities, achieving operational results, building highly effective organizations and collaborating across organizational boundaries. Expertise includes management and diffusion of innovation, customer insights that drive action, consumer, SMB and enterprise customer segments, retail channel and international markets

Specialties: Strategic Marketing, Developing and delivering growth strategies, Management of Innovation, Consumer Marketing. Growth mindset. Innovation Funnel Management. New Category Creation. Excellent people and business management. Digital Marketing. PPC SEO and full funnel optimization. Data Analytics

Experience

```
|
 Head of Rider Product Marketing
 Lyft Full-time
 May 2020 - Present . 11 mo
(1) !
 HP
 Head of Innovation and Incubation
 Nov 2019 - May 2020.7 mos
 Global Head, Consumer Product and Segment Marketing
 Jul 2016 - Nov 2019 - 3 yrs 5 mos
 Palo Alto
VP Brand and Marketing
 Evernote - Jul 2016 - 6 mos
 San Francisco Bay Area
 Chief Marketing Officer
 O Chiefma
 Mar 2015-Mar 2016 - 1 yr 1 mo
 San Francisco Bay Area
LYTZO Vice President Marketing
 LYO Lytro Inc.
 Jan 2014 - Mar 2015 - 1 yr 3 mos
 Mountain View, California
Show 5 more experiences \checkmark
Education
| Imperial College London
 MBA, Marketing and Innovation
 1990-1991
Kingston University
 Bachelor of Engineering - BE, Electronic Systems Engineering
 l
```

Explore conditions of January, CitiBike ridership for segmentation and targeting.

resources

## References

Spencer, Scott. Sec. 3.2-3.3. "Interaction: technologies and tools of interactive data-driven, visual design," and "Interaction: Interactive communication with data-driven graphics." In Data in Wonderland. 2021. https://ssp3nc3r.github.io/data in wonderland.

Attardi, Joe. Modern CSS: Master the Key Concepts of CSS for Modern Web Development, 2020. https://doi.org/10.1007/978-1-4842-6294-8.

Bellamy-Royds, Amelia, Kurt Cagle, and Dudley Storey. Using SVG with CSS3 and HTML5 : Vector Graphics for Web Design. O'Reilly, 2018.

Duckett, Jon. HTML \& CSS. Design and Build Websites. Wiley, 2011; JavaScript \& JQuery: Interactive Front-End Web Development. Indianapolis, IN: Wiley, 2014.

Fay, Colin, Vincent Guyader, Sebastien Rochette, and Girard Cervan. Engineering ProductionGrade Shiny Apps. First edition. R Series. Boca Raton: CRC Press, 2021. https://engineeringshiny.org.

Gohel, David, and Panagiotis Skintzos. "Ggiraph: Make 'ggplot2' Graphics Interactive." Manual, 2021. https://davidgohel.github.io/ggiraph.

Hohman, Fred, Matthew Conlen, Jeffrey Heer, and Duen Chau. "Communicating with Interactive Articles." Distill 5, no. 9 (September 11, 2020): 10.23915/distill.00028. https:// doi.org/10.23915/distill.00028.

Hullman, Jessica, Steven Drucker, Nathalie Henry Riche, Bongshin Lee, Danyel Fisher, and Eytan Adar. "A Deeper Understanding of Sequence in Narrative Visualization." IEEE Transactions on Visualization and Computer Graphics 19, no. 12 (August 2013): 2406-15.

Hullman, Jessica, and Andrew Gelman. "Designing for Interactive Exploratory Data Analysis Requires Theories of Graphical Inference." Harvard Data Science Review, no. 3.3 (July 23, 2021). https://doi.org/10.1162/99608f92.3ab8a587.

Hullman, Jessica, and Andrew Gelman. "Challenges in Incorporating Exploratory Data Analysis into Statistical Workflow." Harvard Data Science Review, no. 3.3 (July 30, 2021). https://doi.org/10.1162/99608f92.9d108ee6.

Janert, Philipp K. D3 for the Impatient: Interactive Graphics for Programmers and Scientists. First edition. Sebastopol, CA: O'Reilly Media, Inc, 2019.

Kotzé, Paula, INTERACT, and International Federation for Information Processing, eds. "Storytelling in Visual Analytics Tools for Business Intelligence." In Human-Computer Interaction: INTERACT 2013; 14th IFIP TC 13 International Conference, Cape Town, South Africa, September 2-6, 2013; Proceedings. Pt. 3: ..., 280-97. Lecture Notes in Computer Science 8119. Heidelberg: Springer, 2013.

McKenna, S., N. Henry Riche, B. Lee, J. Boy, and M. Meyer. "Visual Narrative Flow: Exploring Factors Shaping Data Visualization Story Reading Experiences." Computer Graphics Forum 36, no. 3 (June 2017): 377-87. https://doi.org/10.1111/cgf.13195. Supplemental material: https:// narrative-flow.github.io/

Murray, Scott. Interactive Data Visualization for the Web. Second. An Introduction to Designing with D3. O'Reilly, 2017.

Reas, Casey, and Ben Fry. Processing A Programming Handbook for Visual Designers and Artists. Second. The MIT Press, 2014.

Sarikaya, Alper, Michael Correll, Lyn Bartram, Melanie Tory, and Danyel Fisher. "What Do We Talk About When We Talk About Dashboards?" IEEE Transactions on Visualization and Computer Graphics 25, no. 1 (January 2019): 682-92. https://doi.org/10.1109/ TVCG.2018.2864903.

Schneiders, Pascal. "What Remains in Mind? Effectiveness and Efficiency of Explainers at Conveying Information." Media and Communication 8, no. 1 (March 18, 2020): 218-31. https:// doi.org/10.17645/mac.v8il. 2507.

Sievert, Carson. Interactive Web-Based Data Visualization with R, Plotly, and Shiny. Boca Raton, FL: CRC Press, Taylor and Francis Group, 2020. https://plotly-r.com.

Vaidyanathan, Ramnath, Yihui Xie, JJ Allaire, Joe Cheng, Carson Sievert, and Kenton Russell. "Htmlwidgets: HTML Widgets for r." Manual, 2020. https://CRAN.R-project.org/ package=htmlwidgets; main introduction: http://www.htmlwidgets.org.

