Research Design

03: elements of causal inference; experiments

Scott Spencer | Columbia University

goals of data science research

goals of data science research

descriptive

predictive

associative

explicative

goals of data science research, explicative

What is causation?

Scott Spencer / 💭 https://ssp3nc3r.github.io

🙊 scott.spencer@columbia.edu

CAUSE, N. | That which produces an effect; that which gives rise to any action, phenomenon, or condition. *Cause* and *effect* are correlative terms.

How can we learn or test if thing A causes thing B?

scott.spencer@columbia.edu

causal inference and experiments

causal inference, the potential outcomes approach

Causal effects involve the comparison of the outcome actually observed with other potential outcomes that could have been observed had the treatment taken on a different level, but that are not, in fact, observed. Causal inference is therefore fundamentally a missing data problem.

— Imbens & Rubin

causal inference, which concerns what would happen to an outcome y as a result of a treatment, intervention, or exposure z, given pre-treatment information x.

— Gelman, Hill, Ventari

What's a *treatment*? Why can't we observe these *potential* outcomes, these *missing* data?

The Road Not Taken

Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

Then took the other, as just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same,

And both that morning equally lay In leaves no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back.

I shall be telling this with a sigh Somewhere ages and ages hence: Two roads diverged in a wood, and I— I took the one less traveled by, And that has made all the difference.

— Robert Frost

the potential outcomes approach, common notation for causal inference in experiments

- *i*, an experimental unit
- z = 0, the control group
- z = 1, the treatment group
- y_i^0 , the potential outcome of unit *i* if no treatment
- y_i^1 , the potential outcome of unit *i* if treatment

 $y_i = y_i^0 \cdot (1 - z_i) + y_i^1 \cdot z_i$, the observed outcome of unit *i*

 $\tau_i = y_i^1 - y_i^0$, causal effect for unit *i*

 $\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} (y_i^1 - y_i^0)$, sample average treatment effect

The fundamental problem of causal inference: we can never observe both y_i^0 and y_i^1 . And we can only attribute an average treatment effect $\hat{\tau}$ to a unit if we assume that effects are constant across units.

$$\bar{\tau} = \frac{1}{N} \sum_{i=1}^{N} (y_i^1 - y_i^0)$$
, population average treatment effe

				Potential outcomes		Observed
Unit <i>i</i>	Female, <i>x</i> _{1<i>i</i>}	Age, x_{2i}	Treatment, z _i	if $z_i = 0, y_i^0$	if $z_i = 1, y_i^1$	outcome, y _i
Audrey	1	40	0	140	135	140
Anna	1	40	0	140	135	140
Bob	0	50	0	150	140	150
Bill	0	50	0	150	140	150
Caitlin	1	60	1	160	155	155
Cara	1	60	1	160	155	155
Dave	0	70	1	170	160	160
Doug	0	70	1	170	160	160

Do you think this treatment assignment *balances* the treatment and control groups, or is it *biased*? What's the sample average treatment effect $\hat{\tau}$ for this particular treatment assignment? How does $\hat{\tau}$ compare with the *unknown true* average treatment effect? Now re-assign the units to treatment and control groups randomly where $z \perp y^0$, y^1 and repeat. What do you get?

```
set.seed(3)
z <- sample(c(0,0,0,0,1,1,1,1), 8)</pre>
```

Of note, with just 8 units, split equally between treatment and control groups, there are

$$\binom{n+k-1}{k} = 330$$

unique possible experiments!

the potential outcomes approach, properties of randomization

```
d <-
 read.table(text = '
  Unit
         Female Age z yi0 yi1
  Audrey
               40 0 140 135
          1
           1 40 0 140 135
  Anna
  Bob
           0 50 0 150 140
  Bill
           0
               50 0 150 140
  Caitlin
          1
               60 1 160 155
           1
               60 1 160 155
  Cara
           0 70 1 170 160
  Dave
           0
               70 1 170 160
  Doug
', header = TRUE)
tau_tru <- with(d, mean(yi1 - yi0) )</pre>
      <- with(d, yi0 * (1 - z) + yi1 * z)
d$yi
      <- with(d, mean(yi[z == 1]) )
y1
       <- with(d, mean(yi[z == 0]))
y0
tau_hat <- y1 - y0
set.seed(123)
d$z
       <- sample(c(0, 0, 0, 0, 1, 1, 1, 1), 8)
       <- with(d, yi0 * (1 - z) + yi1 * z)
d$yi
       <- with(d, mean(yi[z == 1]))
y1
       <- with(d, mean(yi[z == 0]))
y0
tau_hat <- y1 - y0
```

No *single* randomized experiment guarantees that $\hat{\tau}$ will be close to the *unknown* true average treatment effect.

Try experimenting with different seeds in this code, and re-run to see how individual $\hat{\tau}$ is affected by the sample.

the potential outcomes approach, properties of randomization

```
sim_experiment <- function(d) {</pre>
  d$z <- sample(c(0, 0, 0, 0, 1, 1, 1, 1), 8)
  y1 <- with(d, mean(yi1[z == 1]))
  y0 <- with(d, mean(yi0[z == 0]) )</pre>
 return(y1 - y0)
tau_hat <- replicate( 1e6, sim_experiment(d) )</pre>
library(ggplot2)
library(ggthemes)
ggplot() +
  theme_tufte() +
  geom_histogram(aes(tau_hat),
                 bins = 10,
                 fill = "lightgray",
                 color = "white") +
  geom_vline(aes(xintercept = tau_tru),
             color = "pink",
             lwd = 1.1) +
  geom_vline(aes(xintercept = mean(tau_hat)),
             color = "dodgerblue",
             linetype = "dashed")
```

E_tau_hat <- mean(tau_hat)</pre>

But randomly assigning units to treatment and control groups ensures that there are *no differences in expectation in the distribution* of potential outcomes between groups receiving different treatments — it's an *unbiased* estimator. In these simulations, $\mathbb{E}(\hat{\tau}) = -7.497 \simeq -7.5$

By collecting *more units*, we can improve balance in single experiments, and by collecting *pre-treatment* information, we can *adjust for imbalances* — techniques we cover later.

Scott Spencer / 💭 https://ssp3nc3r.github.io 🛛 😰 scott.spencer@columbia.edu

review of a published, randomized controlled experiment

van der Horst, et al. The Preventive Effect of the Nordic Hamstring Exercise on Hamstring Injuries in Amateur Soccer Players

Purpose?

Null hypothesis?

Alternative hypothesis?

Experimental design?

Results?

introducing your group projects

References

"cause, n.". OED Online. September 2020. Oxford University Press. https://www-oedcom.ezproxy.cul.columbia.edu/view/Entry/29147? rskey=AMcwBV&result=1&isAdvanced=false (accessed September 23, 2020).

Blitzstein, Joseph K., and Jessica Hwang. Introduction to Probability. Second edition. Boca Raton: Taylor & Francis, 2019.

Cox, D. R., and N. Reid. *The Theory of the Design of Experiments*. Monographs on Statistics and Applied Probability 86. Boca Raton: Chapman & Hall/CRC, 2000.

Gelman, Andrew, Jennifer Hill, and Aki Ventari. "Causal inference and randomized experiments, Chp. 18". In Regression and Other Stories. S.l.: Cambridge University Press, 2020.

Hernán, Miguel A, and James M Robins. Causal Inference: What If. Chapman & Hall/CRC, 2020.

Imbens, Guido W, and Donald B Rubin. *Causal Inference for Statistics*, Social, and Biomedical Sciences. 1st ed. An Introduction. Cambridge University Press, 2015.

Pearl, Judea. CAUSALITY: Models, Reasoning, and Inference Second Edition. Cambridge University Press, 2009.

Rosenbaum, Paul. "Randomized Experiments, Part I." In Observation and Experiment: An Introduction to Causal Inference. Harvard University Press, 2017.

