# Research Design

**06: observational studies** 



Scott Spencer | Columbia University

Initial questions about the pre-lecture notes?

observational studies

controlled experiments

randomizing treatment asymptotically balances pre-treatment differences among observations

ethics

control

expense

time

observational studies

data readily available

selection confounding omitted-variable bias balance overlap



#### confounding covariates and omitted-variable bias

Scott Spencer / 💭 https://ssp3nc3r.github.io



🙊 scott.spencer@columbia.edu

confounder bias, simple example using simulated data

Treatment has no effect, potential confounding covariate *balanced* between treatment and control





# confounder bias, simple example using simulated data *omitting* the confounder

```
d_bar <- d %>% group_by(independent) %>%
  summarise(count = n(), dependent = mean(dependent))
ggplot(d) +
  theme_tufte(base_family = "sans") +
  geom_density(aes(x = dependent, y = ...scaled... * n),
               fill = "lightgray", outline.type = "both", bw = 0.25) +
  geom_vline(data = d_bar, aes(xintercept = dependent)) +
  geom_text(data = d_bar, aes(x = 5, y = N / 10,
                              label = paste0("N = ", format(count, big.mark = ","))),
           size = 8/.pt, hjust = 0) +
  facet_grid( ~ independent) +
  scale_x_continuous(breaks = 0:6) +
  scale_y_continuous(breaks = NULL) +
  labs(x = "Dependent variable", y = "Relative frequency")
```



#### *including the confounder*

```
d_bar <- d %>% group_by(confounder, independent) %>%
  summarise(count = n(), dependent = mean(dependent))
ggplot(d) +
  theme_tufte(base_family = "sans") +
  geom_density(aes(x = dependent, y = ...scaled... * n),
               fill = "lightgray", outline.type = "both", bw = 0.3) +
  geom_vline(data = d_bar, aes(xintercept = dependent)) +
  geom_text(data = d_bar, aes(x = 5, y = N / 10,
                             label = paste0("N = ", format(count, big.mark = ","))),
           size = 8/.pt, hjust = 0) +
  facet_grid(confounder ~ independent) +
  scale_x_continuous(breaks = 0:6) +
  scale_y_continuous(breaks = NULL) +
  labs(x = "Dependent variable", y = "Relative frequency")
```



scott.spencer@columbia.edu

confounder bias, simple example using simulated data

Treatment has no effect, but selecting  $z_i$  by confounding covariate may bias the analysis.

```
d <- data.frame(</pre>
  independent = c(rep("control", 0.8 * N), rep("treatment", 0.2 * N),
                  rep("control", 0.5 * N), rep("treatment", 0.5 * N),
                  rep("control", 0.2 * N), rep("treatment", 0.8 * N)),
  confounder = c(rep(1, N)),
                 rep(2, N),
                 rep(3, N)),
 dependent = c(rnorm(N, 2, sigma),
                rnorm(N, 3, sigma),
                rnorm(N, 4, sigma))
```





# confounder bias, simple example using simulated data *omitting* the confounder

```
d_bar <- d %>% group_by(independent) %>%
  summarise(count = n(), dependent = mean(dependent))
ggplot(d) +
  theme_tufte(base_family = "sans") +
  geom_density(aes(x = dependent, y = ...scaled... * n),
               fill = "lightgray", outline.type = "both", bw = 0.25) +
  geom_vline(data = d_bar, aes(xintercept = dependent)) +
  geom_text(data = d_bar, aes(x = 5, y = N / 10,
                              label = paste0("N = ", format(count, big.mark = ","))),
           size = 8/.pt, hjust = 0) +
  facet_grid( ~ independent) +
  scale_x_continuous(breaks = 0:6) +
  scale_y_continuous(breaks = NULL) +
  labs(x = "Dependent variable", y = "Relative frequency")
```



#### *including the confounder*

```
d_bar <- d %>% group_by(confounder, independent) %>%
  summarise(count = n(), dependent = mean(dependent))
ggplot(d) +
  theme_tufte(base_family = "sans") +
  geom_density(aes(x = dependent, y = ...scaled... * n),
               fill = "lightgray", outline.type = "both", bw = 0.3) +
  geom_vline(data = d_bar, aes(xintercept = dependent)) +
  geom_text(data = d_bar, aes(x = 5, y = N / 10,
                             label = paste0("N = ", format(count, big.mark = ","))),
           size = 8/.pt, hjust = 0) +
  facet_grid(confounder ~ independent) +
  scale_x_continuous(breaks = 0:6) +
  scale_y_continuous(breaks = NULL) +
  labs(x = "Dependent variable", y = "Relative frequency")
```



confounder bias, simple example using simulated data

Treatment has an effect, but selecting  $z_i$  by confounding covariate may mask the effect.

```
d <- data.frame(</pre>
  independent = c(rep("control", 0.2 * N), rep("treatment", 0.8 * N),
                  rep("control", 0.5 * N), rep("treatment", 0.5 * N),
                  rep("control", 0.8 * N), rep("treatment", 0.2 * N)),
  confounder = c(rep(1, N)),
                 rep(2, N),
                 rep(3, N)),
  dependent = c(rnorm(0.2 * N, 1.5, sigma), rnorm(0.8 * N, 2.5, sigma),
                rnorm(0.5 * N, 2.5, sigma), rnorm(0.5 * N, 3.5, sigma),
                rnorm(0.8 * N, 3.5, sigma), rnorm(0.2 * N, 4.5, sigma))
```







# confounder bias, simple example using simulated data *omitting* the confounder

```
d_bar <- d %>% group_by(independent) %>%
  summarise(count = n(), dependent = mean(dependent))
ggplot(d) +
  theme_tufte(base_family = "sans") +
  geom_density(aes(x = dependent, y = ...scaled... * n),
               fill = "lightgray", outline.type = "both", bw = 0.25) +
  geom_vline(data = d_bar, aes(xintercept = dependent)) +
  geom_text(data = d_bar, aes(x = 5, y = N / 10,
                              label = paste0("N = ", format(count, big.mark = ","))),
           size = 8/.pt, hjust = 0) +
  facet_grid( ~ independent) +
  scale_x_continuous(breaks = 0:6) +
  scale_y_continuous(breaks = NULL) +
  labs(x = "Dependent variable", y = "Relative frequency")
```



#### *including the confounder*

```
d_bar <- d %>% group_by(confounder, independent) %>%
  summarise(count = n(), dependent = mean(dependent))
ggplot(d) +
  theme_tufte(base_family = "sans") +
  geom_density(aes(x = dependent, y = ...scaled... * n),
               fill = "lightgray", outline.type = "both", bw = 0.3) +
  geom_vline(data = d_bar, aes(xintercept = dependent)) +
  geom_text(data = d_bar, aes(x = 5, y = N / 10,
                             label = paste0("N = ", format(count, big.mark = ","))),
           size = 8/.pt, hjust = 0) +
  facet_grid(confounder ~ independent) +
  scale_x_continuous(breaks = 0:6) +
  scale_y_continuous(breaks = NULL) +
  labs(x = "Dependent variable", y = "Relative frequency")
```



scott.spencer@columbia.edu

regression adjustments, stratification, matching, and weighting, and combinations of these



#### adjustments with multivariate models





#### multivariate models, relationship of classical statistics to regression models

#### Let's simulate some example data,

set.seed(1) n\_0 <- 20 y\_0 <- rnorm(n\_0, 2.0, 5.0) n\_1 <- 30 y\_1 <- rnorm(n\_1, 8.0, 5.0)

#### and calculate sample means $\bar{y}$ and standard deviation s:

```
mean(y_0)
sd(y_0) / sqrt(n_0)
mean(y_1)
sd(y_1) / sqrt(n_1)
```

We get these statistics by *regressing on a constant*:

$$y \sim \beta_0 \cdot 1 + \epsilon$$

#### $\epsilon \sim \text{Normal}(0,\sigma)$

sim\_0 <- data.frame(y\_0)</pre>  $glm_0 <- glm(y_0 ~ 1, data = sim_0)$ sim\_1 <- data.frame(y\_1)</pre>  $glm_1 <- glm(y_1 ~ 1, data = sim_1)$ 



#### multivariate models, relationship of classical statistics to regression models

#### Let's simulate some example data,

set.seed(1)
n\_0 <- 20
y\_0 <- rnorm(n\_0, 2.0, 5.0)
n\_1 <- 30
y\_1 <- rnorm(n\_1, 8.0, 5.0)</pre>

#### recall calculating $\bar{x}_1 - \bar{x}_0$ and standard deviation *s*:

```
diff <- mean(y_1) - mean(y_0)
s_0 <- sd(y_0) / sqrt(n_0)
s_1 <- sd(y_1) / sqrt(n_1)
s <- sqrt(s_0 ^ 2 + s_1 ^ 2)</pre>
```

or get the difference by *regressing on an indicator*:

$$y \sim \beta_0 \cdot 1 + \beta_1 \cdot x_1 + \epsilon$$
$$x_{1,i} = \begin{cases} 0, & z_i = 0\\ 1, & z_i = 1 \end{cases}$$
$$\epsilon \sim \text{Normal}(0,\sigma)$$

y <- c(y\_0, y\_1)
x <- c(rep(0, n\_0), rep(1, n\_1))
sim <- data.frame(x, y)</pre>

 $glm_delta <- glm(y ~ x, data = sim)$ 

Note: the sample standard deviation *s* differs slightly because the regression model estimates a single residual standard deviation parameter, as compared to the difference calculation which uses separate values of  $s_0$  and  $s_1$ .





multivariate models, adjusting for multiple covariates

If we assume *additivity*, we can adjust for multiple covariates using regression, *e.g.*:

### $y \sim \beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n + \epsilon$

Scott Spencer / 🗘 https://ssp3nc3r.github.io



🙊 scott.spencer@columbia.edu

propensity scores and matching





propensity scores and matching, restructure observational data to resemble a randomized experiment

- Step 1: Defining the confounders and estimand
- Step 2: Estimating the propensity score
- Step 3: Matching to restructure the data
- Step 4: Diagnostics for balance and overlap
  - *Repeat steps 2–4 until adequate balance is achieved*
- Step 5: Estimating a treatment effect using the restructured data
- Gelman et al. 2020





### propensity scores and matching, example — step 1: defining the confounders and estimand



**Observations:** About 2 million residential properties in Mid-Atlantic region sold between 2005 and 2018.

Estimand: effect of expected coastal flooding on sale price of single-family residential properties

**Potential confounders?** 





### propensity scores and matching, example — step 1: defining the confounders and estimand



**Observations:** About 2 million residential properties in Mid-Atlantic region sold between 2005 and 2018.

Estimand: effect of expected coastal flooding on sale price of single-family residential properties

Confounders: location, neighborhood or region, area of property, area of building, month and year of sale, ...







#### propensity scores and matching, example — step 1: defining the confounders and estimand



| Data summary                          |                     |  |  |  |  |  |  |
|---------------------------------------|---------------------|--|--|--|--|--|--|
| Name Number of rows Number of columns | Piped data 35228 24 |  |  |  |  |  |  |
| Column type frequency: factor numeric | 8 16                |  |  |  |  |  |  |
| Group variables                       | None                |  |  |  |  |  |  |

#### Variable type: factor

| skim_variable  | missing | complete | n_unique |
|----------------|---------|----------|----------|
| fsid           | 0       | 35228    | 35228    |
| saleyear       | 0       | 35228    | 13       |
| instrumentdate | 0       | 35228    | 3425     |
| blocks         | 0       | 35228    | 7426     |
| blkgrs         | 0       | 35228    | 787      |
| tracts         | 0       | 35228    | 339      |
| contys         | 0       | 35228    | 22       |
| states         | 0       | 35228    | 3        |
|                |         |          |          |

#### Variable type: numeric

| skim_variable    | missing | complete | mean      | sd        | р0      | p25       | р50       | p75       | p10       |
|------------------|---------|----------|-----------|-----------|---------|-----------|-----------|-----------|-----------|
| transferamount   | 0       | 35228    | 347225.18 | 309423.10 | 4450.00 | 157500.00 | 275000.00 | 440000.00 | 9500000.0 |
| Pr_Sq_Ft         | 0       | 35228    | 182.58    | 105.58    | 10.03   | 111.54    | 166.67    | 238.33    | 544.6     |
| х                | 0       | 35228    | -75.95    | 0.59      | -77.25  | -76.48    | -76.17    | -75.28    | -74.7     |
| у                | 0       | 35228    | 38.81     | 0.46      | 37.96   | 38.48     | 38.78     | 39.13     | 40.2      |
| coastdistft      | 0       | 35228    | 1350.51   | 3559.09   | 0.00    | 43.00     | 398.00    | 980.00    | 55951.0   |
| yearbuilt        | 0       | 35228    | 1969.56   | 37.25     | 1700.00 | 1950.00   | 1977.00   | 2000.00   | 2018.0    |
| fld_fsid         | 0       | 35228    | 0.12      | 0.26      | 0.00    | 0.00      | 0.00      | 0.08      | 1.0       |
| fld_blocks       | 0       | 35228    | 0.13      | 0.22      | 0.00    | 0.00      | 0.03      | 0.16      | 1.0       |
| fld_blkgrs       | 0       | 35228    | 0.13      | 0.17      | 0.00    | 0.02      | 0.07      | 0.17      | 0.9       |
| fld_tracts       | 0       | 35228    | 0.11      | 0.15      | 0.00    | 0.01      | 0.05      | 0.14      | 0.9       |
| fld_contys       | 0       | 35228    | 0.06      | 0.11      | 0.00    | 0.01      | 0.02      | 0.05      | 0.5       |
| fld_states       | 0       | 35228    | 0.03      | 0.01      | 0.00    | 0.02      | 0.03      | 0.03      | 0.0       |
| rdem_fsid        | 0       | 35228    | 0.12      | 0.23      | 0.00    | 0.00      | 0.01      | 0.11      | 1.0       |
| log_areabuilding | 0       | 35228    | 7.42      | 0.46      | 4.72    | 7.10      | 7.40      | 7.72      | 10.1      |
| log_arealotacres | . 0     | 35228    | -1.10     | 1.14      | -4.78   | -1.76     | -1.22     | -0.56     | 9.5       |
| log_coastdistft  | 0       | 35228    | 5.01      | 2.93      | 0.00    | 3.78      | 5.99      | 6.89      | 10.9      |

#### propensity scores and matching, example — steps 2 & 3: estimating propensity score, matching to restructure data



#### Steps 2 and 3

Matching method: non-parametric propensity scores (Diamond, 2013) given co-variates including building area, property area, geographic location, distance from coast, government boundaries, year built, sale month and year... from *treatment* (expected flooding) and *control* (expected no flooding) groups used to match treatment to control.

```
library(Matching)
prop_scores <- with(d, GenMatch(Tr = __, X = __, ...) )</pre>
matches <- Match(Y = __, Tr = __, X = __, Weight.matrix = prop_scores, ...)</pre>
treated <- d[matches$index.treated, ]</pre>
control <- d[matches$index.control, ]</pre>
```





#### propensity scores and matching, example — step 4: diagnostics for balance and overlap





scott.spencer@columbia.edu





#### propensity scores and matching, example — step 5: estimate treatment effects, after adjustments for covariates

#### (Custom Bayesian) model still included adjustments because matching won't create perfect balance and overlap ...





Year-over-year fractional discount of price per square foot of property associated with expected flooding.

-0.10 -0.45 -0.40 -0.25 -0.05 -0.35 -0.30 -0.20 -0.15 0.00 .0.50 Discount on property value

propensity scores and matching, example — step 5: estimate treatment effects, after adjustments for covariates



group project work

#### References

**Diamond**, Alexis, and Jasjeet S. Sekhon. *Genetic Matching for Estimating Causal Effects: A* General Multivariate Matching Method for Achieving Balance in Observational Studies. Review of Economics and Statistics 95, no. 3 (July 2013): 932–45.

Gelman, Andrew, Jennifer Hill, and Aki Ventari. "Observational Studies with All Confounders Assumed to Be Measured, Chp. 20." In Regression and Other Stories. S.I.: Cambridge University Press, 2020.

Ho, Daniel E, Kosuke Imai, Gary King, and Elizabeth A Stuart. *Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference.* Political Analysis 15, no. 3 (2007): 199–236.

Rosenbaum, Paul. Design of Observational Studies. Springer Nature, 2021.

———. Observation and Experiment: An Introduction to Causal Inference. Harvard University Press, 2017.

———. *Observational Studies*. Second. Springer, 2002.

Sekhon, Jasjeet S. Multivariate and Propensity Score Matching Software with Automated Balance *Optimization: The Matching Package for R.* Journal of Statistical Software 42, no. 7 (2011).

Teele, Dawn Langan. Field Experiments and Their Critics: Essays on the Uses and Abuses of *Experimentation in the Social Sciences*. New Haven: Yale University Press, 2014.



scott.spencer@columbia.edu