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Initial questions about the pre-lecture notes?



observational studies
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controlled experiments observational studies

randomizing treatment asymptotically balances  
pre-treatment differences among observations

ethics 

control 

expense 

time

data readily available

selection 

confounding 

omitted-variable bias 

balance 

overlap
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confounding covariates and omitted-variable bias
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confounder bias, simple example using simulated data

set.seed(1) 

N <- 1e5 
sigma <- 0.5 

d <- data.frame( 
  independent = c(rep("control", 0.5 * N), rep("treatment", 0.5 * N), 
                  rep("control", 0.5 * N), rep("treatment", 0.5 * N), 
                  rep("control", 0.5 * N), rep("treatment", 0.5 * N)), 
  confounder = c(rep(1, N), 
                 rep(2, N), 
                 rep(3, N)), 
  dependent = c(rnorm(N, 2, sigma), 
                rnorm(N, 3, sigma), 
                rnorm(N, 4, sigma)) 
)

Treatment has no effect, potential confounding 
covariate balanced between treatment and control
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omitting the confounder including the confounder
d_bar <- d %>% group_by(independent) %>%  
  summarise(count = n(), dependent = mean(dependent)) 

ggplot(d) + 
  theme_tufte(base_family = "sans") + 
  geom_density(aes(x = dependent, y = ..scaled.. * n),  
               fill = "lightgray", outline.type = "both", bw = 0.25) + 
  geom_vline(data = d_bar, aes(xintercept = dependent)) + 
  geom_text(data = d_bar, aes(x = 5, y = N / 10, 
                              label = paste0("N = ", format(count, big.mark   = ","))), 
            size = 8/.pt, hjust = 0) + 
  facet_grid( ~ independent) + 
  scale_x_continuous(breaks = 0:6) + 
  scale_y_continuous(breaks = NULL) + 
  labs(x = "Dependent variable", y = "Relative frequency") 

confounder bias, simple example using simulated data

d_bar <- d %>% group_by(confounder, independent) %>%  
  summarise(count = n(), dependent = mean(dependent)) 

ggplot(d) + 
  theme_tufte(base_family = "sans") + 
  geom_density(aes(x = dependent, y = ..scaled.. * n),  
               fill = "lightgray", outline.type = "both", bw = 0.3) + 
  geom_vline(data = d_bar, aes(xintercept = dependent)) + 
  geom_text(data = d_bar, aes(x = 5, y = N / 10, 
                              label = paste0("N = ", format(count, big.mark   = ","))), 
            size = 8/.pt, hjust = 0) + 
  facet_grid(confounder ~ independent) + 
  scale_x_continuous(breaks = 0:6) + 
  scale_y_continuous(breaks = NULL) + 
  labs(x = "Dependent variable", y = "Relative frequency") 
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d <- data.frame( 
  independent = c(rep("control", 0.8 * N), rep("treatment", 0.2 * N), 
                  rep("control", 0.5 * N), rep("treatment", 0.5 * N), 
                  rep("control", 0.2 * N), rep("treatment", 0.8 * N)), 
  confounder = c(rep(1, N), 
                 rep(2, N), 
                 rep(3, N)), 
  dependent = c(rnorm(N, 2, sigma),  
                rnorm(N, 3, sigma),  
                rnorm(N, 4, sigma)) 
)

Treatment has no effect, but selecting  by  
confounding covariate may bias the analysis.

zi

confounder bias, simple example using simulated data
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omitting the confounder including the confounder
confounder bias, simple example using simulated data

d_bar <- d %>% group_by(independent) %>%  
  summarise(count = n(), dependent = mean(dependent)) 

ggplot(d) + 
  theme_tufte(base_family = "sans") + 
  geom_density(aes(x = dependent, y = ..scaled.. * n),  
               fill = "lightgray", outline.type = "both", bw = 0.25) + 
  geom_vline(data = d_bar, aes(xintercept = dependent)) + 
  geom_text(data = d_bar, aes(x = 5, y = N / 10, 
                              label = paste0("N = ", format(count, big.mark   = ","))), 
            size = 8/.pt, hjust = 0) + 
  facet_grid( ~ independent) + 
  scale_x_continuous(breaks = 0:6) + 
  scale_y_continuous(breaks = NULL) + 
  labs(x = "Dependent variable", y = "Relative frequency") 

d_bar <- d %>% group_by(confounder, independent) %>%  
  summarise(count = n(), dependent = mean(dependent)) 

ggplot(d) + 
  theme_tufte(base_family = "sans") + 
  geom_density(aes(x = dependent, y = ..scaled.. * n),  
               fill = "lightgray", outline.type = "both", bw = 0.3) + 
  geom_vline(data = d_bar, aes(xintercept = dependent)) + 
  geom_text(data = d_bar, aes(x = 5, y = N / 10, 
                              label = paste0("N = ", format(count, big.mark   = ","))), 
            size = 8/.pt, hjust = 0) + 
  facet_grid(confounder ~ independent) + 
  scale_x_continuous(breaks = 0:6) + 
  scale_y_continuous(breaks = NULL) + 
  labs(x = "Dependent variable", y = "Relative frequency") 
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d <- data.frame( 
  independent = c(rep("control", 0.2 * N), rep("treatment", 0.8 * N), 
                  rep("control", 0.5 * N), rep("treatment", 0.5 * N), 
                  rep("control", 0.8 * N), rep("treatment", 0.2 * N)), 
  confounder = c(rep(1, N), 
                 rep(2, N), 
                 rep(3, N)), 
  dependent = c(rnorm(0.2 * N, 1.5, sigma), rnorm(0.8 * N, 2.5, sigma),  
                rnorm(0.5 * N, 2.5, sigma), rnorm(0.5 * N, 3.5, sigma),  
                rnorm(0.8 * N, 3.5, sigma), rnorm(0.2 * N, 4.5, sigma)) 
) 

Treatment has an effect, but selecting  by 
confounding covariate may mask the effect.

zi

confounder bias, simple example using simulated data
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omitting the confounder including the confounder
confounder bias, simple example using simulated data

d_bar <- d %>% group_by(independent) %>%  
  summarise(count = n(), dependent = mean(dependent)) 

ggplot(d) + 
  theme_tufte(base_family = "sans") + 
  geom_density(aes(x = dependent, y = ..scaled.. * n),  
               fill = "lightgray", outline.type = "both", bw = 0.25) + 
  geom_vline(data = d_bar, aes(xintercept = dependent)) + 
  geom_text(data = d_bar, aes(x = 5, y = N / 10, 
                              label = paste0("N = ", format(count, big.mark   = ","))), 
            size = 8/.pt, hjust = 0) + 
  facet_grid( ~ independent) + 
  scale_x_continuous(breaks = 0:6) + 
  scale_y_continuous(breaks = NULL) + 
  labs(x = "Dependent variable", y = "Relative frequency") 

d_bar <- d %>% group_by(confounder, independent) %>%  
  summarise(count = n(), dependent = mean(dependent)) 

ggplot(d) + 
  theme_tufte(base_family = "sans") + 
  geom_density(aes(x = dependent, y = ..scaled.. * n),  
               fill = "lightgray", outline.type = "both", bw = 0.3) + 
  geom_vline(data = d_bar, aes(xintercept = dependent)) + 
  geom_text(data = d_bar, aes(x = 5, y = N / 10, 
                              label = paste0("N = ", format(count, big.mark   = ","))), 
            size = 8/.pt, hjust = 0) + 
  facet_grid(confounder ~ independent) + 
  scale_x_continuous(breaks = 0:6) + 
  scale_y_continuous(breaks = NULL) + 
  labs(x = "Dependent variable", y = "Relative frequency") 
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regression adjustments, stratification, matching,  
and weighting, and combinations of these
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adjustments with multivariate models
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multivariate models, relationship of classical statistics to regression models

set.seed(1) 
n_0 <- 20 
y_0 <- rnorm(n_0, 2.0, 5.0) 

n_1 <- 30 
y_1 <- rnorm(n_1, 8.0, 5.0)

sim_0 <- data.frame(y_0) 
glm_0  <- glm(y_0 ~ 1, data = sim_0) 

sim_1 <- data.frame(y_1) 
glm_1  <- glm(y_1 ~ 1, data = sim_1) 

mean(y_0) 
sd(y_0) / sqrt(n_0) 

mean(y_1) 
sd(y_1) / sqrt(n_1)

Let’s simulate some example data,

and calculate sample means  and standard deviation :ȳ s

We get these statistics by regressing on a constant:

ϵ ∼ Normal(0,σ)

 y ∼ β0 ⋅ 1 +ϵ
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set.seed(1) 
n_0 <- 20 
y_0 <- rnorm(n_0, 2.0, 5.0) 

n_1 <- 30 
y_1 <- rnorm(n_1, 8.0, 5.0)

y <- c(y_0, y_1) 
x <- c(rep(0, n_0), rep(1, n_1)) 
sim <- data.frame(x, y) 

glm_delta <- glm(y ~ x, data = sim)

diff <- mean(y_1) - mean(y_0) 

s_0 <- sd(y_0) / sqrt(n_0) 
s_1 <- sd(y_1) / sqrt(n_1) 

s <- sqrt(s_0 ^ 2 + s_1 ^ 2)

Let’s simulate some example data,

recall calculating  and standard deviation :x̄1 − x̄0 s

or get the difference by regressing on an indicator:

multivariate models, relationship of classical statistics to regression models

Note: the sample standard deviation  differs slightly because the regression 
model estimates a single residual standard deviation parameter, as compared to 
the difference calculation which uses separate values of  and .

s

s0 s1

ϵ ∼ Normal(0,σ)

x1,i = {0, zi = 0
1, zi = 1

 y ∼ β0 ⋅ 1 +β1 ⋅ x1+ϵ
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If we assume additivity, we can adjust for 
multiple covariates using regression, e.g.:

multivariate models, adjusting for multiple covariates

   y ∼ β0 + β1x1 +…+ βnxn +ϵ
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propensity scores and matching
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propensity scores and matching, restructure observational data to resemble a randomized experiment

Step 1: Defining the confounders and estimand 

Step 2: Estimating the propensity score 

Step 3: Matching to restructure the data 

Step 4: Diagnostics for balance and overlap 

Repeat steps 2–4 until adequate balance is achieved 

Step 5: Estimating a treatment effect using the restructured data

— Gelman et al. 2020
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propensity scores and matching, example — step 1: defining the confounders and estimand

Estimand: effect of expected coastal flooding on 
sale price of single-family residential properties

Potential confounders?

Observations: About 2 million residential 
properties in Mid-Atlantic region sold between 
2005 and 2018.
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Confounders: location, neighborhood or region, 
area of property, area of building, month and 
year of sale, …

Estimand: effect of expected coastal flooding on 
sale price of single-family residential properties

Observations: About 2 million residential 
properties in Mid-Atlantic region sold between 
2005 and 2018.

propensity scores and matching, example — step 1: defining the confounders and estimand
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propensity scores and matching, example — step 1: defining the confounders and estimand
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Matching method: non-parametric propensity scores 
(Diamond, 2013) given co-variates including 
building area, property area, geographic location, 
distance from coast, government boundaries, year 
built, sale month and year… from treatment (expected 
flooding) and control (expected no flooding) groups 
used to match treatment to control.

library(Matching) 

prop_scores <- with(d, GenMatch(Tr = __, X = __, ...) ) 
matches <- Match(Y = __, Tr = __, X = __, Weight.matrix = prop_scores, ...) 

treated <- d[matches$index.treated, ] 
control <- d[matches$index.control, ]

Steps 2 and 3

propensity scores and matching, example — steps 2 & 3: estimating propensity score, matching to restructure data
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propensity scores and matching, example — step 4: diagnostics for balance and overlap



Scott Spencer / https://ssp3nc3r.github.io scott.spencer@columbia.edu 24

propensity scores and matching, example — step 5: estimate treatment effects, after adjustments for covariates

(Custom Bayesian) model still included adjustments because matching won’t create perfect balance and overlap …
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Year-over-year fractional discount of price per square 
foot of property associated with expected flooding.

Counterfactuals: expected flooding in areas surrounding 
property may matter more than flooding on property.

Discount on property value

high property flooding  
high surrounding flooding

low property flooding  
high surrounding flooding

high property flooding  
low surrounding flooding

low property flooding  
low surrounding flooding

propensity scores and matching, example — step 5: estimate treatment effects, after adjustments for covariates



group project work
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