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integrating images and words in narrative to create shared meaning
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Edward Tufte, in Visual Explanations — his book about pictures of verbs to show causes and effects, 
explanations and narratives — cites to comics for understanding the idea of “visual narrative”.

Tufte, Edward
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A very simple story using only words
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A very simple story using words The same story using only images
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Shared meaning of words and images
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Shared meaning of words and images
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The balance between text and visualization becomes 
an issue when too much text takes away from the data 
but too little text leaves the viewer confused and unable 
to see the connections.

Kosara
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Storyboards are a tool to test narrative containing mixed media types
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We should market ourselves as data-driven, forward-
thinking, and creative. 

To demonstrate our creativity, we attempted to turn 
paintings into data, analyze it, and create an entirely new 
painting perhaps indistinguishable from the master, 
Rembrandt. Did Rembrandt paint this? Or did we?

To answer the challenge, we gathered a extensive 
pool of data. Perhaps to some, a large collection of 
paintings are not data. But we partnered with 
museums to collect many of Rembrandt’s works. 

Our analysis of these works — these data — helped 
us understand how to paint like Rembrandt.

With these paintings, we coded and trained an 
algorithm to see what we can see through our own eyes, 
to identify the subject of each painting, to learn the 
demographics of this master painter’s focus.

That wasn’t enough. Then, our algorithm identified the 
features of his subjects, like the shape of the face and eyes.

To make a painting like Rembrandt, though, we would need 
it to look and feel like his originals. Paintings have texture 
and depth. We measured the actual depth of his paint strokes 
on each of the works we collected, turning messy, real-world 
information into structured data for our algorithm.

After transforming the data generated by our 
algorithm, we were able to create the new painting by 
feeding it back into a 3D printer. 

We apply this same dedication using technology to 
inform our customers. We can do even more with 
data for our clients. Let’s make them curious about 
how we can use data to create solutions for them.

The Next Rembrandt, demonstrating our data science skills we can apply to client needs. 2020 February 29 Ing CMO Scott Spencer

Can we convince clients 
we are the Rembrandt of 
data science?

What from his paintings can 
we turn into data to create a 
new solution? A new painting?

Clustering demographics

Learning his facial shapes

Measuring paint depth

Printing in three dimensions, 
we are Rembrandt …

… of data science.  
Let’s show clients our  

creative data solutions.
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Can we convince clients 
we are the Rembrandt of 
data science?

What from his paintings can 
we turn into data to create a 
new solution? A new painting?

Clustering demographics

Learning his facial shapes

Measuring paint depth

Printing in three dimensions, 
we are Rembrandt …

… of data science.  
Let’s show clients our  

creative data solutions.

Do we think this is a story? Do the visuals add to the written narrative? 
Would it engage the audience? Explain.
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use data graphics to support and amplify your narrative
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Why show data graphically?
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Classic example, datasets from Anscombe

Anscombe
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Classic example, datasets from Anscombe Summary statistics of data: are they the same?
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Classic example, datasets from Anscombe
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Graphics show how the datasets are different
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graphics, the non-data-ink
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graphics, the non-data-ink
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Subtitle in sentence case.

Title of the Chart
can be Multiple Lines.

Caption text can be used for notes
or, say, describing the data source.
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Just provide the label text and coordinates.
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graphics, the non-data-ink Coding graphic elements, example in R/GGplot2
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graphics, points, lines, surfaces, volumes
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graphics, points, lines, surfaces, volumes
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graphics, points, lines, surfaces, volumes
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graphics, points, lines, surfaces, volumes
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graphics, points, lines, surfaces, volumes
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graphics, data-ink encodings
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graphics, options for data-ink encodings
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Position is in itself a very precise way of encod-
ing information, but its usefulness in encoding 
numbers can be further enhanced by adding a 
scale. Data points can be compared even across 
several charts with relative ease when the charts 
have linked scales, meaning that similar distance 
in position corresponds to the same di!erence 
in value on both. (See Data visualization 
handbook, pp. 83–85.)

Scales are not helpful in encoding order or 
categories.
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Koponen & Hildén

graphics, accuracy of data-ink decodings
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What data encodings do we find in the following named charts?
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Common graphics, identify the data-ink encodings
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Studio work — exploratory data analysis
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