Storytelling With Data

Effective visuals — encoding data
graphically: grammar, layers, color

Scott Spencer | Columbia University
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the grammar of graphics
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statistical graphic specifications are expressed in six statements

DATA : a set of data operations that create variables from datasets

TRANSFORMATIONS : variable transformations (e.g., rank)

SCALES : scale transformations (e.g., log)

COORDINATES : a coordinate system (e.g., cartesian, polar)

ELEMENTS : graphs (e.g, points, lines) and their aesthetic attributes (e.g, color, opacity, shape, size, orientation)

GUIDES : one or more guides (axes, legends, efc.)

Wilkinson, Leland
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ggplot2 is the grammar of graphics implemented in R

# load grammar of graphics
library(ggplot2)

# functions for data ink

DATA  ggplot(data ,

TRANSFORMATIONS mapping = aes( = ,
= ) -+
ELEMENTS geom_ ( ) +
SCALES & GUIDES scale_ _ ( ) +
COORDINATES  coord_ ( ) +
facet_ ( ) +
+
GUIDES # functions for non-data ink element_blank()

element_line(

labs ) + element_rect(

theme ( _ ) + element_text(

annotate( ) +

Wickham, Hadley
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thinking about graphics as layers
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when one form or shape overlaps another, we see an illusion of near and far.
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order of elements determines position towards reader and when overlapping, occlude.

geom_point(aes(x = 0, y = 0), geom_point(aes(x =1, y = 1),

size = 50, color = "orange") size = 50, color = "dodgerblue")
geom_point(aes(x =1, y = 1), geom_point(aes(x = 6, y = 0),

size = 50, color = "dodgerblue") size = 50, color = "orange")
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layering by type of encoding, color in this case, helps separate information types.
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layering by type of encoding helps separate information types. Maps tend to be exemplary.
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Kay, Matthew

in this example, observed data are separately layered “behind” scale of residuals.

A. LINEAR MODEL

1. This example fit for scatterplot-negative
shows non-constant variance: Whenr is
large, the scale of the residuals shrinks.
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B. LOG-LINEAR MODEL
1. This example fit for scatterplot-negative
shows constant variance: At all values of
r, the scale of the residuals is the same.
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2. The combined fit for all visualizations also shows
non-constant variance: When the predicted
JND is small, the scale of the residuals shrinks.
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2. The combined fit for all visualizations also shows
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Fig. 3 Comparison of fits of the linear model (Section 3) and the log-linear model (Section 4). Example fits of each model to scatterplot—negative
are shown in A.1 and B.1. Plots of normalized residuals for all visualization x direction pairs are shown in A.2 and B.2. Density plots of normal-

ized residuals with comparison to the standard normal distribution are shown in A.3 and B.3.
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layering can create hierarchy and clarity in graphics narratives
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in this Euler diagram, color and texture help to distinguish layers of information
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Samara, Timothy

transparency can enhance, or create conflicts with, the illusion of spatial arrangement.
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X <- rnorm(1000)
y <- rnorm(16000)

alpha

for layered data encoded in monochrome, transparency reveals density.

black
= 0.2

Scott Spencer / () o

dense areas of
data are darker
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alpha

alpha

layered data encoded in color, if overlapping, is affected by transparency!

orange

0.4

dodgerblue

I didrn’t encode
data with
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encoding data as color
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encode data using color spaces, which are mathematical models

(0, 0, 255)

Green
(0, 255, 0)
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Hue

Chroma

Luminance

wavelength (1)
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how can we map data to light, whether using its hue, chroma, or luminance?
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perceived brightness is nonlinear function of luminance

LUMINANCE : the measured amount of light coming from some region of space.

BRIGHTNESS : the perceived amount of light coming from that region of space.
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visual perception of an arithmetical progression depends on a physical geometric progression
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Iso Actual Luminance distribution
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q Perceived Luminance distribution

Our comparative perception causes interpretation errors
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ts. We see compa
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background and adjacent luminance can interfere w

Ware, Colin Scott Spencer / €
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background and adjacent luminance can interfere with our perception
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high foreground to background luminance contrast enhances shape, lower contrast enhances grayscale

War c, COlln Scott Spencer / () 2
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as with luminance, hue values in the RGB color space fail to uniformly scale across values.

/-\
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HSL colorspace is intuitive, but not perceptually uniform in each attribute.

Same luminance or lightness?

HSL(60, 100%, 50%)

HSL (250, 100%, 50%)

BOI‘OIllne, AleXel Scott Spencer / )
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HSL colorspace is intuitive, but not perceptually uniform in each attribute.

Same saturation?

HSL(0, 90%, 80%)

HSL(0, 90%, 40%)

BOI‘OIllne, AleXel Scott Spencer / )
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HSL colorspace is intuitive, but not perceptually uniform in each attribute.

Equal difference between hues?
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HSL(30, 100%, 50%) HSL (230, 100%, 50%)

HSL(50, 100%, 50%)
HSL (250, 100%, 50%)
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other color spaces show changes in color we perceive as uniform.

light

red €z’

s * ™= green
vellow &=----____ ) ____------

dark
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The International Commission on
[llumination (CIE) studied human
perception and re-mapped color
into a space where we perceive
color changes uniformly.

Their CIELuv color model has
two dimensions — u and v — that
represent color scales from red to
green and yellow to blue.



perceptually uniform color spaces better represent quantity.

Scott Spencer ! €)
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example encoding data as perceptually uniform color attributes: R + ggplot2 - HSLuv

library(HSLuv)

df <- expand.grid(H = c(20, 2990),
S = seq(6, 1060, by = 10)
L = seq(©, 100, by = 10)

df$colors <- with(df, hsluv_hex(H, S, L) )

Scott Spencer / )

library(ggplot2)

ggplot(df) +

theme_minimal() +

theme(panel.grid

element_blank(),
axis.text.x.top = element_blank()) +

geom_point(aes(L, S),

color
fill
size
shape

'#eeeeee'
df$colors,
10,

22) +

scale_x_continuous(breaks =

sec.axi1is

scale_y_continuous(breaks =

facet_wrap(~H) +

labs(x
Y

'Luminance’,
'Saturation')

)

seq(0, 1006, by = 20),
= sec_axis(~., name = 'Hue')) +

seq(@, 100, by = 20)) +


https://github.com/ssp3nc3r/hsluv-rcpp

example encoding data as perceptually uniform color attributes: R + ggplot2 - HSLuv
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perceptually uniform color spaces also help in distinguishing categorical data.

/\
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interaction of color
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Albers, Josef

one color appearing as two
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Albers, Josef

two different colors look alike
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Albers, Josef

vibrating boundaries, occurs with contrasting hues of similar luminance
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perspectives on tools
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a designer’s experiments. One chart created with numerous tools (though more exist)
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There are no perfect tools, just good
tools for people with certain goals.
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whatever your tools, invest time learning—and applying—design. Do it for your audience.

R —— » I |
@EdwardTufte Some Time Spent on Design No Time Spent on Design
#Rstats coders and users just
can't do words on graphics and =0
typography. Proof: 40 years of 120
clunky, even recent Stanford 155

Statistics textbooks. Publication-
quality work requires: R +
Adobe lllustrator + reasoning
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& See ./philip.sh's other Tweets >

Meeks, Elijah
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practice in the studio
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Let The Music Play

All songs from the TOP 2000 of 2017 according to their release years

Position in the Top 2000

1 10 25 50 100 250 500 1000 2000

B
()

TOP 2000

Presenting
All 2000 songs

with
hover|click a circle and see...

When hovering (or clicking on mobile) a circle all the songs of that artist are highlighted
and connected by a line. When the song happens to be a collaboration between two
artists, you'll see multiple lines, one for each artist.

Created by Nadieh Bremer | Visual Data from NPO Radio 2 Ga naar de Nederlandse versie Check out my Top 2000 visuals from 2015 &
Cinnamon 2016
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https://nbremer.github.io/top2000vinyl/
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