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What are variation and uncertainty? Where might each arise?
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variation in context — the data generating process
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data generating process | the local nature of data

The focus on collecting “big data” for analyses can miss 
differences in what data represent.  

What generated each observation? Be specific with 
context. How was each observation measured? Who 
collected each observation?
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the local nature of data | example — data in baseball depends on stadium, location, weather, people, …
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In this map of age-adjusted kidney cancer rates, the counties shaded 
are those counties that are in the lowest decile of the cancer 
distribution. 

We note that these healthy counties tend to be very rural, midwestern, 
southern, and western counties. 

It is both easy and tempting to infer that this outcome is directly due 
to the clean living of the rural life-style—no air pollution, no water 
pollution, access to fresh food without additives, etc.

variation | variation in means depend on sample size
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In another map of age-adjusted kidney cancer rates. While it looks 
very much like figure 1.1, it differs in one important detail—the 
counties shaded are those counties that are in the highest decile of the 
cancer distribution. 

We note that these ailing counties tend to be very rural, midwestern, 
southern, and western counties. 

It is both easy to infer that this outcome might be directly due to the 
poverty of the rural lifestyle—no access to good medical care, a high-fat diet, 
and too much alcohol, too much tobacco.

variation | variation in means depend on sample size
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variation | variation in means are inversely proportional to square root of sample size
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The apparent paradox is explained by variation due to sample size — 
Moivre’s equation in action. The variation in the mean is inversely 
proportional to the square root of the sample size, and so small 
counties have much larger variation than large counties. 

Our credibility and decisions informed by communication are both 
improved when we accurately convey variation and uncertainty.

variation | variation in means are inversely proportional to square root of sample size
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The most
dangerous equation

De Moivre’s equation:

the number of observations 
in each subset

!

!!̅

"

the measure of the variability of a 
population (its standard deviation).

the variation of averages of 
subsets of the population.

∴ 						 !!̅ < !

Why so dangerous? Extreme length of time during which 
ignorance of it has caused confusion

Wide breadth of areas that have been misled

Seriousness of the consequences that 
ignorance has caused

variation | variation in means are inversely proportional to square root of sample size
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variation | sample distributions differ from the population for which we want to infer something

Hullman, Jessica
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uncertainty | let’s categorize uncertainty

model specifications and selections estimations in model parameters

decisions from model outputswhether computations work as intended

Do the models (parameters, data, functions)  
represent the underlying process intended 
for inference and account for data collection?

parameters represent variation in 
observations, measurement error, etc

look to decision theory, utility functionse.g., calculation overflows, underflows, coding mistakes



Scott Spencer / https://github.com/ssp3nc3r scott.spencer@columbia.edu 14

communicating variation and uncertainty
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What obstacles have you found in communicating uncertainty?
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uncertainty | overcoming concerns with communicating uncertainty

Fischhoff, Baruch

Response | probability judgments 
give us more accuracy about the 
information; i.e., won’t be too 
confident or lack enough confidence.

Concern | people will misinterpret 
quantities of uncertainty, inferring 
more precision than intended.

Response | Most people like getting quantitative 
information on uncertainty, from them can get the 
main message, and without them are more likely 
to misinterpret verbal expressions of uncertainty. 
Posing clear questions guide understanding.

Concern | people cannot use 
probabilities.

Response | laypeople can provide high-
quality probability judgments, if they are 
asked clear questions and given the chance 
to reflect on them. Communicating 
uncertainty protects credibility.

Concern | credible intervals may be 
used unfairly in performance 
evaluations.
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visually encoding uncertainty
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encoding uncertainty | consider alternative encodings and how perception may differ

Hullman, Jessica

Uncertainty in storm path 
misperceived as growth in size

Alternative way to express 
uncertainty of storm path
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encoding uncertainty | no quantification occurs most — provides least information for decisions

Hullman, Jessica
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encoding uncertainty | intervals are perhaps the most common encodings for uncertainty

Hullman, Jessica
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encoding uncertainty | probability densities tend to provide the most information about data
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encoding uncertainty | arrays of icons — people tend to think discretely, relate to familiar objects
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encoding uncertainty | quantile dot plots create countable distributions — improves decoding accuracy

Kay, Matthew & co-authors
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encoding uncertainty | hypothetical outcome plots (showing samples serially) may help people feel uncertainty

Hullman, Jessica
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encoding uncertainty | mapping uncertainty to color channel (hue, saturation, luminance)

Correll, Michael & co-authors
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encoding uncertainty | typical communication solutions may combine approaches

Hullman, Jessica



Scott Spencer / https://github.com/ssp3nc3r scott.spencer@columbia.edu 27

encoding uncertainty about missing data
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uncertainty | example ways we can show missing data, whether omitted or imputed

Song & Szafir
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uncertainty | perception and confidence of data depend on form of communicating about missing values

Song & Szafir

Perceived data quality and confidence generally 
degrade as the amount of missing data increases.  

Data visualized by highlighting missing values tends to 
be seen as higher quality than downplay or 
information removal.  

Information removal can significantly degrade 
perceptions of data quality, and confidence. These 
methods even lead to incorrect responses if missing 
values break the visual continuity of a visualization.  

Modeling missing values (imputation) leads to higher 
perceptions of quality and confidence in analysis.
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words expressing uncertainty matter too
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uncertainty | people vary in their interpretation of words communicating quantity

Barclay and zonination
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uncertainty | people vary in their interpretation of words communicating probability

Barclay and zonination
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Summer suggestion: Bayesian analysis and decision theory
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