Creating and placing custom glyphs

Scott Spencer

2020 April 6

Contents
1 Reference graphic 2
11 Reference individual glpyh encodings 2
1.2 Referenceglyphplacements., 3
2 Tools 3
3 Collecting the data 3
4 Reconstruction 4
42 Codingtheglyph e 4
412 Preparing the basicstructure L L. 4
4.2 First layer: gray petals encoding idea measures 6
42.3 Second layer: colored and sized petals encoding high measures. . . . 7
4.4 Third layer: colored and sized petals encoding low measures 8
41.5 Fourth layer: adding stems and text label for country 9
4.2 Placing glyphs on the plot relative toeachother 9

In this tutorial, we explore creating and placing custom glyphs by studying Nadieh Bremer’s
graphic for Article19: The Freedom of Expression.

1 Reference graphic

The Expression Map 2016

. legend
/

N/
LK JX I ¥) a~

N
Pt X X L
; @ sop ®
R Y A | S,
Y Y EEARIUORS R JOJORR
A 8 Po o P8 anasnens i ny
g ‘.'.O..‘.l#.oaaum’ﬁ@f)%*x*
P88 20 @®0%8svcnsannas —*
KX N s & on
@ 9 5005800 anaa s
LI Y »
sov8sa
top %080 |
ss0 48
s %00 80

Before continuing, review this reference graphic on her website: https://www.
visualcinnamon.com/portfolio/the-freedom-of-expression.

11 Reference individual glpyh encodings

In the graphic, each glyph represents a specific country and five measures related to the
freedom of expression, civic, digital, media, protection, and transparency:

Cou””y‘s chart

The circles' size scales The lighter the color
with the score for each the better that pillar's
pillar. The larger the score

circle, the better -

the score

ave Ciyj
e c
W SPace

The inner circle indicates
the lower boundary score
for the pillar, and the

lighter outer circle, the
higher boundary score

The grey background
represents the size of
the optimal score for

each expression pillar

[enbiq -

Each measure is encoded as a colored circle with their centers evenly spaced around a unit
circle, i.e., a circle with center at (0,0) and radius of 1 unit. As a circle’s circumference spans
360 degrees or 2 - 7, each measure would be spaced at multiples of QT”

https://www.visualcinnamon.com/portfolio/the-freedom-of-expression
https://www.visualcinnamon.com/portfolio/the-freedom-of-expression
https://en.wikipedia.org/wiki/Unit_circle
https://en.wikipedia.org/wiki/Unit_circle

Each measure’s data is scaled from o to 1. We find several layers in the glyph. The first, back,
layer, is colored light gray and its size encoded as the ideal measure of expression. The next
layer forward encodes the high value of that measure for the given country as both size and
color along a gradient. The third layer encodes the low value of the same measure, again
encoding the value as both size and color. These layers are grouped visually around a unit
circle where, for each measure, a “stem” (line segment) spans from the origin of the unit
circle (0,0) along the specified angle for that measure ending on the circle’s circumference.

Finally, above the glyph, text encodes the name of the country.
1.2 Reference glyph placements

The complete graphic contains an above glyph for each country, over 160 in all, wherein their
placement — left to right — encodes average freedom value relative to the other countries.
Those with high average values are to the left, those with low values to the right. Along with
axis, glyphs with similar values are spread vertically.

2 Tools

We'll be using the following packages:

library(knitr) # create tables and knitting this document
library(kableExtra) # create tables

library(dplyr) # organize data

library(ggplot2) # create graphics

library(ggforce) # ggplot2 extension to draw or encode data as circles
library(jsonlite) # gather json data from website

3 Collecting the data

First, let’s get the data, which comes from Varieties of Democracy (V-Dem): https://www.
v-dem.net. We can gather this from Nadieh’s website as a JSON file using the function
fromJSON from the R package jsonlite.

rawdata <-
jsonlite: :fromJSON(pasteO("https://nbremer.github.io/",
"articlel9/data/",
"article_19_country_data.min.json"))

The rawdata comes in as a list, and for teaching purposes, we'll just pull the 2016 data of
the five measures into a dataframe:

d16 <- rawdata$xpa_datal[[11]]

Here are the first few rows of the data:

country_name country_id _civic _civic_low _civic_high _ digital _ digital_low _ digital_high _media _media_low _media_high _protection _protection_low _protection_high _transparency _transparency_low _transparency_high _avg_value

Afghanistan ARG 0363 0288 ous o516 0429 0616 0499 0399 0582 039 0282 o515 0337 o023 o 0366
Albania AR 0606 o519 0683 0659 0553 omy o0 0375 osi7 o754 0643 o089 0658 0552 oms 0586
Algeria oza 0169 o120 0223 0202 oy oam o2 oa7s 0309 0292 0200 0.408 0347 0265 0457 0258
Angola G0 0367 o029 ouss 0568 0469 0662 0520 ou2s o604 0467 0353 o0s70 021 ouy 0287 0369
Argentina ARG 0789 o729 0818 0856 0789 o002 0787 o716 o088 o781 0662 0.858 0799 0699 0868 0788

https://www.v-dem.net
https://www.v-dem.net

4 Reconstruction

Perhaps the most efficient approach is to first encode the individual glyph, and then translate
or move each glyph to a particular place relative to the others. First we build the glyph.

41 Coding the glyph
414 Preparing the basic structure

We'll use R and a few of its packages, ggplot2 for most of the graphic functions and
ggforce for its function to create circles (geom_circle()).

library(ggplot2); library(ggforce)

Let's start by setting up the general graphic and a coordinate system where the x and y axis
are equally scaled. Eventually we will want to place each glyph at various x and y coordinates,
so we'll add two variables to the data but, for now, we'll set them all to the origin.

di6$x <- 0
diegy <- 0

d16_first <- di16[1,] # to test glyph, start with first observation

p <-
ggplot(di6_first) +
theme_minimal() +
coord_equal() +
labs(x = '', y="'")

Next, we just draw a unit circle with its center at the origin.

p+
geom_circle(aes(x0 = x,
yo =y,
r 1),
color = "#000000")

We will need five of these, one for each measure, and their centers should be set along the
unit circle’s circumference at equally-spaced angles. To make it easier to place each type,
let's create a function to place it around the circle’s circumference:

create function to calculate the angle for each type
petal_loc <- function(i) {

c(cos(2 * pi / 6 *x i), sin(2 * pi / 5 * i))
}

xy_civic <- petal_loc(1)
xy_digital <- petal_loc(2)
xy_media <- petal_loc(3)
xy_protection <- petal_loc(4)
xy_transparency <- petal_loc(5)

Let's first check to see that our numbers are correct, by including a point for each measure-
ment type around the unit circle we graphed above where the type’s circle center will be
located. Notice that for each point, we add the origin, or data, to the location around the
circle circumference. Doing this makes the location of the glyph components relative to the
data:

p+

geom_circle(aes(xo = x,
yo =y,
r =1),

color = "#000000") +
geom_point(aes(x = x + xy_civic[1],
geom_point(aes(x = x + xy_digitall[1],

y xy_civic[2])) +

y
geom_point(aes(x = x + xy_medial[l], y =

y

y

xy_digitall[2])) +
xy_media[2])) +
xy_protection[2])) +
xy_transparency[2]))

geom_point(aes(x = x + xy_protection[1],
geom_point(aes(x = x + xy_transparencyl[1],

Y <<
+ o+ o+ o+ 4+

10 05 00 0s 0

Each point will be where we place the circle centers for each measurement type. In our actual
glyph, we will not draw either the unit circle or the five points. Next, we begin encoding our
actual glyph, layer-by-layer, to the data.

41.2 First layer: gray petals encoding idea measures

So far so good. Now, we can arrange five circles (aka “petals”) around the circle:

p<-p+t
geom_circle(aes(x0

x + xy_civic[1],

yo = y + xy_civic[2],
r =1),

£fill = "#eeeeee",

color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_digitall[1],

yO = y + xy_digitall[2],
r =1),

fill = "#eeeeee",

color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_medial[l],
yO = y + xy_medial2],

r =1),
fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_protection[1],

yO = y + xy_protection[2],
r =1),

fill = "#eeeeee",

color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_transparency[1],
yO = y + xy_transparency[2],

r =1),
fill = "#eeeeee",
color = "#eeeeee")

That finishes our first, back, layer for a single glyph. Next, let's layer on the “high” values for
each type.

41.3 Second layer: colored and sized petals encoding high measures

Here, we'll start to encode actual data. Those encodings include data as color, for the petals,

so we set up color and fill scales:

p<-p+t
scale_color_gradientn(colors
values
scale_fill_gradientn(colors
values

Il)

theme (legend.position

c("#0DOOOA", "#ca0000", "#ED8BOO",
seq(0, 1, length.out = 4)) +
c("#0DOOOA", "#ca0000", "#EDS8BOO", "#F2A900"),
seq(0, 1, length.out = 4)) +

"#F2A900") ,

Let's overlay the next layer, encoding each measure’s average value for that country to color,
and encoding the high value of the range to size of the circle’s radius:

p<-p+
geom_circle (aes(x0
yo
r
color

0 + xy_civic[1],
0 + xy_civic[2],
civic_high,
civic,

£ill = civic),

size
alpha
geom_circle (aes(x0
yo

r

0,
0.4) +

0 + xy_digitall1l],
0 + xy_digitall[2],
digital_high,

color = digital,
fill = digital),

size
alpha
geom_circle (aes(x0
yo =
r
color

£ill

0,
0.4) +

0,
0.4) +

size

alpha

geom_circle (aes(x0
yo =

r

0 + xy_medial1],
0 + xy_medial[2],
media_high,
media,
media),

0 + xy_protection[1],
0 + xy_protection[2],
protection_high,

color = protection,
fill = protection),

size
alpha
geom_circle(aes(x0
yo

r

0,
0.4) +

0 + xy_transparency[1],
0 + xy_transparency[2],
transparency_high,

color = transparency,

£ill
0,

0.4)

size
alpha

transparency),

4.4 Third layer: colored and sized petals encoding low measures

Great, let's add the third, low value, layer, just setting the low values to, say, 0.6:

p<-p+t
geom_circle(aes(x0
yo
r

0 + xy_civic[1],
0 + xy_civic[2],
civic_low,
color = civic,
fill = civic),
size = 0,
alpha = 0.4) +
geom_circle(aes(x0 = 0 + xy_digital[1],
yO = 0 + xy_digitall[2],
r = digital_low,
color = digital,
£ill = digital),
size = 0,
alpha = 0.4) +
geom_circle(aes(x0 0 + xy_medial[1],
yo 0 + xy_medial[2],
r media_low,
color = media,
fill = media),
size = 0,
alpha = 0.4) +
geom_circle(aes(x0 = 0 + xy_protection[1],
yO = 0 + xy_protection[2],
r = protection_low,
color = protection,
fill = protection),
size = 0,
alpha = 0.4) +
geom_circle(aes(x0 = 0 + xy_transparency[1],
yO = 0 + xy_transparency[2],
r = transparency_low,
color = transparency,
fill = transparency),
size = 0,
alpha = 0.4)

415 Fourth layer: adding stems and text label for country

We have two layers left, adding the stems and the country name. Let's do all five together with
the name, so that will mean adding five line segments and a text label to the glyph. Following
the reference, we'll encode average measure values as color, and use some transparency:

p<-p+t
geom_segment (aes(x = 0,
y =0,
xend = 0 + xy_civic[1],
yend = 0 + xy_civic[2],

color = civic),
size = 0.6,
alpha = 0.5) +
geom_segment (aes(x = 0,
y =0,
xend = 0 + xy_digitall[1],
yend = 0 + xy_digitall2],
color = digital),
size = 0.6,
alpha = 0.5) +
geom_segment (aes(x = 0,

y =0,
xend = 0 + xy_medial[1l],
yend = 0 + xy_medial[2],

color = media),
size = 0.6,
alpha = 0.5) +
geom_segment (aes(x = 0,

y=0,
xend = 0 + xy_protection[1],
yend = 0 + xy_protection[2],

color = protection),
size = 0.6,
alpha = 0.5) +
geom_segment (aes(x = 0,
y=0
xend = 0 + xy_transparency[1],
yend = 0 + xy_transparency[2],
color = transparency),
size = 0.6,
alpha = 0.5) +
geom_text(aes(x=x, y = y + 2.1, label = country_name), size = 4/.pt)

4.2 Placing glyphs on the plot relative to each other

With our glyph setup and mapped to data, we now need to change the default x and y
locations from (0, 0) to something meaningful. Looking back to the reference graphic, we

see that the glyphs are arranged left to right from high average values to low average values.
So we need to assign each glyph to a place based on its average value relative to the others.

We can set this up by arranging our observations in order of average value. There are 160
observations (countries). We can arrange 160 values as a matrix or grid with a size of, say,
20 by 8. Now, doing this would mean the result is completely symmetrical whereas the
reference grid has more variation. So let's try moving each grid location by a small random
amount to create a similar idea. Each location on the 20 x 8 grid needs to be a good bit
wider than the glyph itself. So along each axis we can just setup a sequence of numbers and
multiply them to add space. The following code arranges the countries by average value
avg_value, then assigns its x and y values like so,

di6 <- di6 %>%
arrange ((avg_value)) %>
mutate(y = rep(seq(20), each = 8) * 6 + rnorm(160, 0, 0.8),
x = rep(c(0, 1, -1, 2, -2, 3, -3, 4), 20) * 6 + rnorm(160, 0, 0.8))

To use the new x and y, we just place the full dataframe d16 into the above code. Altogether,
p <-

base graphic

ggplot (di6) +
theme_void() +
coord_equal() +

labs(x = "', y = '"") +

scales

scale_color_gradientn(colors = c("#0DOOOA", "#ca0000", "#ED8BOO", "#F2A900"),
values = seq(0, 1, length.out = 4)) +

scale_fill_gradientn(colors = c("#0DOOOA", "#ca0O0O00", "#ED8BOO", "#F2A900"),
values = seq(0, 1, length.out = 4)) +

theme (legend.position = '') +

add gray layer
geom_circle(aes(x0 = x + xy_civic[1],
yoO = y + xy_civic[2],

r=1),
fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_digitall1],
yO = y + xy_digitall[2],

r=1),
fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_mediall],
yO = y + xy_medial2],

r=1),
fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_protection[1],
yO = y + xy_protection[2],

r=1),
fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_transparency[1],
y0 = y + xy_transparency[2],
r=1),
fill = "#eeeeee",

10

color

add high value lay
geom_circle(aes(x0

"#eeeeee") +

er

x + xy_civic[1],

yO = y + xy_civic[2],
r = civic_high,
color = civic,
fill = civic),
size = 0,
alpha = 0.4) +
geom_circle(aes(x0 = x + xy_digitall1],
yOo = y + xy_digitall2],
r = digital_high,
color = digital,
£fill = digital),
size = 0,
alpha = 0.4) +
geom_circle(aes(x0 = x + xy_medial1],
yO = y + xy_medial2],
r = media_high,
color = media,
fill = media),
size = 0,
alpha = 0.4) +
geom_circle(aes(x0 = x + xy_protection[1],
yO = y + xy_protection[2],
r = protection_high,
color = protection,
fill = protection),
size = O,
alpha = 0.4) +
geom_circle(aes(x0 = x + xy_transparency[1],
yO = y + xy_transparency[2],
r = transparency_high,
color = transparency,
f£ill = transparency),
size = O,
alpha = 0.4) +

add low value laye
geom_circle(aes(x0
yo

r

colo

fill

0

size

alpha

geom_circle (aes(x0
yo

r

colo

fill

0

size

alpha
geom_circle(aes(x0 =
yo =

r

colo

fill

0

size
alpha

r

x + xy_civic[1],

y + xy_civic[2],
civic_low,
civic,

civic),

r

0.4) +

x + xy_digitall1],
y + xy_digitall[2],
digital_low,

r = digital,
= digital),
0.4) +

x + xy_media[1],
y + xy_medial2],
media_low,
media,
media),

r

>

0.4) +

1"

geom_circle(aes(x0 = x + xy_protection[1],

yO = y + xy_protection[2],
r = protection_low,
color = protection,
fill = protection),
size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = x + xy_transparencyl[1],

yO = y + xy_transparency[2],
r = transparency_low,
color = transparency,
fill = transparency),
size = 0,
alpha = 0.4) +

add stems and text labeels
geom_segment (aes(x = x,

y=Y’
xend = x + xy_civic[1],
yend = y + xy_civic[2],
color = civic),
size = 0.6,
alpha = 0.5) +

geom_segment (aes(x = x,

y = y’
xend = x + xy_digital[1],
yend = y + xy_digital[2],
color = digital),

size = 0.6,

alpha = 0.5) +

geom_segment (aes(x = x,

y = y’
xend = x + xy_medial[1],
yend = y + xy_medial2],
color = media),

size = 0.6,

alpha = 0.5) +

geom_segment (aes(x = x,

y=y’
xend = x + xy_protection[1],
yend = y + xy_protection[2],
color = protection),

size = 0.6,

alpha = 0.5) +

geom_segment (aes(x = x,

y=y’
xend = x + xy_transparency[1],
yend = y + xy_transparency[2],
color = transparency),

size = 0.6,

alpha = 0.5) +

geom_text (aes(x = x,

y=y+ 2.1,
label = country_name),
size = 4/.pt)

And here are our finished encodings:

12

Study of custom glyph construction
and placement in reference graphic

wwwwww

uuuuu

wwwww

- —

- S S

© ® 3V g e
.

B
g:ﬁgagaﬁ?e

zzzzzz

e Kazakhsian

uuuuuu Venezuela

TR A 1L

¥

Reference design by Nadieh Bremer.
Data source: v—-Dem.

13

	Reference graphic
	Reference individual glpyh encodings
	Reference glyph placements

	Tools
	Collecting the data
	Reconstruction
	Coding the glyph
	Preparing the basic structure
	First layer: gray petals encoding idea measures
	Second layer: colored and sized petals encoding high measures
	Third layer: colored and sized petals encoding low measures
	Fourth layer: adding stems and text label for country

	Placing glyphs on the plot relative to each other

