
Creating and placing custom glyphs

Scott Spencer

2020 April 6

Contents

1 Reference graphic 2

1.1 Reference individual glpyh encodings . 2

1.2 Reference glyph placements . 3

2 Tools 3

3 Collecting the data 3

4 Reconstruction 4

4.1 Coding the glyph . 4

4.1.1 Preparing the basic structure . 4

4.1.2 First layer: gray petals encoding idea measures 6

4.1.3 Second layer: colored and sized petals encoding high measures 7

4.1.4 Third layer: colored and sized petals encoding low measures 8

4.1.5 Fourth layer: adding stems and text label for country 9

4.2 Placing glyphs on the plot relative to each other 9

In this tutorial, we explore creating and placing custom glyphs by studying Nadieh Bremer’s
graphic for Article19: The Freedom of Expression.

1

1 Reference graphic

Before continuing, review this reference graphic on her website: https://www.
visualcinnamon.com/portfolio/the-freedom-of-expression.

1.1 Reference individual glpyh encodings

In the graphic, each glyph represents a specific country and five measures related to the
freedom of expression, civic, digital, media, protection, and transparency:

ho
w to

 re
ad each country's chart

the

legend

D
ig
ital

Media

Transparency

Pr
ot
ec
tio

n

Civic Space

The circles' size scales
with the score for each
pillar. The larger the
circle, the better
the score

The lighter the color
the better that pillar's
score

The inner circle indicates
the lower boundary score
for the pillar, and the
lighter outer circle, the
higher boundary score

The grey background
represents the size of
the optimal score for
each expression pillar

Each measure is encoded as a colored circle with their centers evenly spaced around a unit
circle, i.e., a circle with center at (0,0) and radius of 1 unit. As a circle’s circumference spans
360 degrees or 2 · π, each measure would be spaced at multiples of 2·π

5 .

2

https://www.visualcinnamon.com/portfolio/the-freedom-of-expression
https://www.visualcinnamon.com/portfolio/the-freedom-of-expression
https://en.wikipedia.org/wiki/Unit_circle
https://en.wikipedia.org/wiki/Unit_circle

Each measure’s data is scaled from 0 to 1. We find several layers in the glyph. The first, back,
layer, is colored light gray and its size encoded as the ideal measure of expression. The next
layer forward encodes the high value of that measure for the given country as both size and
color along a gradient. The third layer encodes the low value of the same measure, again
encoding the value as both size and color. These layers are grouped visually around a unit
circle where, for each measure, a “stem” (line segment) spans from the origin of the unit
circle (0,0) along the specified angle for that measure ending on the circle’s circumference.

Finally, above the glyph, text encodes the name of the country.

1.2 Reference glyph placements

The complete graphic contains an above glyph for each country, over 160 in all, wherein their
placement — left to right — encodes average freedom value relative to the other countries.
Those with high average values are to the left, those with low values to the right. Along with
axis, glyphs with similar values are spread vertically.

2 Tools

We’ll be using the following packages:

library(knitr) # create tables and knitting this document
library(kableExtra) # create tables
library(dplyr) # organize data
library(ggplot2) # create graphics
library(ggforce) # ggplot2 extension to draw or encode data as circles
library(jsonlite) # gather json data from website

3 Collecting the data

First, let’s get the data, which comes from Varieties of Democracy (V-Dem): https://www.
v-dem.net. We can gather this from Nadieh’s website as a JSON file using the function
fromJSON from the R package jsonlite.

rawdata <-
jsonlite::fromJSON(paste0("https://nbremer.github.io/",

"article19/data/",
"article_19_country_data.min.json"))

The rawdata comes in as a list, and for teaching purposes, we’ll just pull the 2016 data of
the five measures into a dataframe:

d16 <- rawdata$xpa_data[[11]]

Here are the first few rows of the data:

country_name country_id civic civic_low civic_high digital digital_low digital_high media media_low media_high protection protection_low protection_high transparency transparency_low transparency_high avg_value

Afghanistan AFG 0.363 0.288 0.448 0.516 0.429 0.616 0.499 0.399 0.582 0.396 0.282 0.515 0.337 0.243 0.441 0.366
Albania ALB 0.606 0.519 0.683 0.659 0.553 0.749 0.460 0.375 0.547 0.754 0.643 0.849 0.658 0.552 0.745 0.586
Algeria DZA 0.169 0.120 0.223 0.202 0.149 0.274 0.241 0.175 0.309 0.292 0.200 0.408 0.347 0.265 0.457 0.258
Angola AGO 0.367 0.294 0.444 0.568 0.469 0.662 0.520 0.425 0.604 0.467 0.353 0.570 0.217 0.147 0.287 0.369
Argentina ARG 0.789 0.729 0.848 0.856 0.789 0.902 0.787 0.716 0.848 0.781 0.662 0.858 0.799 0.699 0.868 0.788

3

https://www.v-dem.net
https://www.v-dem.net

4 Reconstruction

Perhaps the most e�cient approach is to first encode the individual glyph, and then translate
or move each glyph to a particular place relative to the others. First we build the glyph.

4.1 Coding the glyph

4.1.1 Preparing the basic structure

We’ll use R and a few of its packages, ggplot2 for most of the graphic functions and
ggforce for its function to create circles (geom_circle()).

library(ggplot2); library(ggforce)

Let’s start by setting up the general graphic and a coordinate system where the x and y axis
are equally scaled. Eventually we will want to place each glyph at various x and y coordinates,
so we’ll add two variables to the data but, for now, we’ll set them all to the origin.

d16$x <- 0
d16$y <- 0

d16_first <- d16[1,] # to test glyph, start with first observation

p <-
ggplot(d16_first) +
theme_minimal() +
coord_equal() +
labs(x = '', y = '')

Next, we just draw a unit circle with its center at the origin.

p +
geom_circle(aes(x0 = x,

y0 = y,
r = 1),

color = "#000000")

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

We will need five of these, one for each measure, and their centers should be set along the
unit circle’s circumference at equally-spaced angles. To make it easier to place each type,
let’s create a function to place it around the circle’s circumference:

create function to calculate the angle for each type
petal_loc <- function(i) {

c(cos(2 * pi / 5 * i), sin(2 * pi / 5 * i))
}

4

xy_civic <- petal_loc(1)
xy_digital <- petal_loc(2)
xy_media <- petal_loc(3)
xy_protection <- petal_loc(4)
xy_transparency <- petal_loc(5)

Let’s first check to see that our numbers are correct, by including a point for each measure-
ment type around the unit circle we graphed above where the type’s circle center will be
located. Notice that for each point, we add the origin, or data, to the location around the
circle circumference. Doing this makes the location of the glyph components relative to the
data:

p +
geom_circle(aes(x0 = x,

y0 = y,
r = 1),

color = "#000000") +
geom_point(aes(x = x + xy_civic[1], y = y + xy_civic[2])) +
geom_point(aes(x = x + xy_digital[1], y = y + xy_digital[2])) +
geom_point(aes(x = x + xy_media[1], y = y + xy_media[2])) +
geom_point(aes(x = x + xy_protection[1], y = y + xy_protection[2])) +
geom_point(aes(x = x + xy_transparency[1], y = y + xy_transparency[2]))

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Each point will be where we place the circle centers for each measurement type. In our actual
glyph, we will not draw either the unit circle or the five points. Next, we begin encoding our
actual glyph, layer-by-layer, to the data.

5

4.1.2 First layer: gray petals encoding idea measures

So far so good. Now, we can arrange five circles (aka “petals”) around the circle:

p <- p +
geom_circle(aes(x0 = x + xy_civic[1],

y0 = y + xy_civic[2],
r = 1),

fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_digital[1],
y0 = y + xy_digital[2],
r = 1),

fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_media[1],
y0 = y + xy_media[2],
r = 1),

fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_protection[1],
y0 = y + xy_protection[2],
r = 1),

fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_transparency[1],
y0 = y + xy_transparency[2],
r = 1),

fill = "#eeeeee",
color = "#eeeeee")

−2

−1

0

1

2

−1 0 1 2

That finishes our first, back, layer for a single glyph. Next, let’s layer on the “high” values for
each type.

6

4.1.3 Second layer: colored and sized petals encoding high measures

Here, we’ll start to encode actual data. Those encodings include data as color, for the petals,
so we set up color and fill scales:

p <- p +
scale_color_gradientn(colors = c("#0D000A", "#ca0000", "#ED8B00", "#F2A900"),

values = seq(0, 1, length.out = 4)) +
scale_fill_gradientn(colors = c("#0D000A", "#ca0000", "#ED8B00", "#F2A900"),

values = seq(0, 1, length.out = 4)) +
theme(legend.position = '')

Let’s overlay the next layer, encoding each measure’s average value for that country to color,
and encoding the high value of the range to size of the circle’s radius:

p <- p +
geom_circle(aes(x0 = 0 + xy_civic[1],

y0 = 0 + xy_civic[2],
r = civic_high,
color = civic,
fill = civic),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = 0 + xy_digital[1],
y0 = 0 + xy_digital[2],
r = digital_high,
color = digital,
fill = digital),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = 0 + xy_media[1],
y0 = 0 + xy_media[2],
r = media_high,
color = media,
fill = media),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = 0 + xy_protection[1],
y0 = 0 + xy_protection[2],
r = protection_high,
color = protection,
fill = protection),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = 0 + xy_transparency[1],
y0 = 0 + xy_transparency[2],
r = transparency_high,
color = transparency,
fill = transparency),

size = 0,
alpha = 0.4)

−2

−1

0

1

2

−1 0 1 2

7

4.1.4 Third layer: colored and sized petals encoding low measures

Great, let’s add the third, low value, layer, just setting the low values to, say, 0.6:

p <- p +
geom_circle(aes(x0 = 0 + xy_civic[1],

y0 = 0 + xy_civic[2],
r = civic_low,
color = civic,
fill = civic),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = 0 + xy_digital[1],
y0 = 0 + xy_digital[2],
r = digital_low,
color = digital,
fill = digital),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = 0 + xy_media[1],
y0 = 0 + xy_media[2],
r = media_low,
color = media,
fill = media),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = 0 + xy_protection[1],
y0 = 0 + xy_protection[2],
r = protection_low,
color = protection,
fill = protection),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = 0 + xy_transparency[1],
y0 = 0 + xy_transparency[2],
r = transparency_low,
color = transparency,
fill = transparency),

size = 0,
alpha = 0.4)

−2

−1

0

1

2

−1 0 1 2

8

4.1.5 Fourth layer: adding stems and text label for country

We have two layers left, adding the stems and the country name. Let’s do all five together with
the name, so that will mean adding five line segments and a text label to the glyph. Following
the reference, we’ll encode average measure values as color, and use some transparency:

p <- p +
geom_segment(aes(x = 0,

y = 0,
xend = 0 + xy_civic[1],
yend = 0 + xy_civic[2],
color = civic),

size = 0.6,
alpha = 0.5) +

geom_segment(aes(x = 0,
y = 0,
xend = 0 + xy_digital[1],
yend = 0 + xy_digital[2],
color = digital),

size = 0.6,
alpha = 0.5) +

geom_segment(aes(x = 0,
y = 0,
xend = 0 + xy_media[1],
yend = 0 + xy_media[2],
color = media),

size = 0.6,
alpha = 0.5) +

geom_segment(aes(x = 0,
y = 0,
xend = 0 + xy_protection[1],
yend = 0 + xy_protection[2],
color = protection),

size = 0.6,
alpha = 0.5) +

geom_segment(aes(x = 0,
y = 0,
xend = 0 + xy_transparency[1],
yend = 0 + xy_transparency[2],
color = transparency),

size = 0.6,
alpha = 0.5) +

geom_text(aes(x=x, y = y + 2.1, label = country_name), size = 4/.pt)

Afghanistan

−2

−1

0

1

2

−1 0 1 2

4.2 Placing glyphs on the plot relative to each other

With our glyph setup and mapped to data, we now need to change the default x and y
locations from (0, 0) to something meaningful. Looking back to the reference graphic, we

9

see that the glyphs are arranged left to right from high average values to low average values.
So we need to assign each glyph to a place based on its average value relative to the others.

We can set this up by arranging our observations in order of average value. There are 160
observations (countries). We can arrange 160 values as a matrix or grid with a size of, say,
20 by 8. Now, doing this would mean the result is completely symmetrical whereas the
reference grid has more variation. So let’s try moving each grid location by a small random
amount to create a similar idea. Each location on the 20 x 8 grid needs to be a good bit
wider than the glyph itself. So along each axis we can just setup a sequence of numbers and
multiply them to add space. The following code arranges the countries by average value
avg_value, then assigns its x and y values like so,

d16 <- d16 %>%
arrange((avg_value)) %>%
mutate(y = rep(seq(20), each = 8) * 6 + rnorm(160, 0, 0.8),

x = rep(c(0, 1, -1, 2, -2, 3, -3, 4), 20) * 6 + rnorm(160, 0, 0.8))

To use the new x and y, we just place the full dataframe d16 into the above code. Altogether,

p <-

base graphic
ggplot(d16) +
theme_void() +
coord_equal() +
labs(x = '', y = '') +

scales
scale_color_gradientn(colors = c("#0D000A", "#ca0000", "#ED8B00", "#F2A900"),

values = seq(0, 1, length.out = 4)) +
scale_fill_gradientn(colors = c("#0D000A", "#ca0000", "#ED8B00", "#F2A900"),

values = seq(0, 1, length.out = 4)) +
theme(legend.position = '') +

add gray layer
geom_circle(aes(x0 = x + xy_civic[1],

y0 = y + xy_civic[2],
r = 1),

fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_digital[1],
y0 = y + xy_digital[2],
r = 1),

fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_media[1],
y0 = y + xy_media[2],
r = 1),

fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_protection[1],
y0 = y + xy_protection[2],
r = 1),

fill = "#eeeeee",
color = "#eeeeee") +

geom_circle(aes(x0 = x + xy_transparency[1],
y0 = y + xy_transparency[2],
r = 1),

fill = "#eeeeee",

10

color = "#eeeeee") +

add high value layer
geom_circle(aes(x0 = x + xy_civic[1],

y0 = y + xy_civic[2],
r = civic_high,

color = civic,
fill = civic),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = x + xy_digital[1],
y0 = y + xy_digital[2],
r = digital_high,
color = digital,
fill = digital),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = x + xy_media[1],
y0 = y + xy_media[2],
r = media_high,
color = media,
fill = media),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = x + xy_protection[1],
y0 = y + xy_protection[2],
r = protection_high,
color = protection,
fill = protection),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = x + xy_transparency[1],
y0 = y + xy_transparency[2],
r = transparency_high,
color = transparency,
fill = transparency),

size = 0,
alpha = 0.4) +

add low value layer
geom_circle(aes(x0 = x + xy_civic[1],

y0 = y + xy_civic[2],
r = civic_low,

color = civic,
fill = civic),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = x + xy_digital[1],
y0 = y + xy_digital[2],
r = digital_low,
color = digital,
fill = digital),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = x + xy_media[1],
y0 = y + xy_media[2],
r = media_low,
color = media,
fill = media),

size = 0,
alpha = 0.4) +

11

geom_circle(aes(x0 = x + xy_protection[1],
y0 = y + xy_protection[2],
r = protection_low,
color = protection,
fill = protection),

size = 0,
alpha = 0.4) +

geom_circle(aes(x0 = x + xy_transparency[1],
y0 = y + xy_transparency[2],
r = transparency_low,
color = transparency,
fill = transparency),

size = 0,
alpha = 0.4) +

add stems and text labeels
geom_segment(aes(x = x,

y = y,
xend = x + xy_civic[1],
yend = y + xy_civic[2],

color = civic),
size = 0.6,
alpha = 0.5) +

geom_segment(aes(x = x,
y = y,
xend = x + xy_digital[1],
yend = y + xy_digital[2],
color = digital),

size = 0.6,
alpha = 0.5) +

geom_segment(aes(x = x,
y = y,
xend = x + xy_media[1],
yend = y + xy_media[2],
color = media),

size = 0.6,
alpha = 0.5) +

geom_segment(aes(x = x,
y = y,
xend = x + xy_protection[1],
yend = y + xy_protection[2],
color = protection),

size = 0.6,
alpha = 0.5) +

geom_segment(aes(x = x,
y = y,
xend = x + xy_transparency[1],
yend = y + xy_transparency[2],
color = transparency),

size = 0.6,
alpha = 0.5) +

geom_text(aes(x = x,
y = y + 2.1,
label = country_name),

size = 4/.pt)

And here are our finished encodings:

12

North Korea

Bahrain

Eritrea
TurkmenistanSyria

Saudi Arabia
South Sudan

Yemen

Tajikistan Equatorial Guinea

Cuba

China

Azerbaijan
Nicaragua

Burundi
Qatar

United Arab Emirates
UzbekistanOman

TurkeyEgypt ThailandSudan Venezuela

Iran Cambodia

Kazakhstan

Russia

Vietnam
Republic of the CongoSwaziland Maldives

Chad

Democratic Republic of the Congo

Bangladesh

Rwanda
Somalia

Belarus

Algeria
Zimbabwe

Ethiopia
CameroonLibya

Mauritania
Pakistan Burma/MyanmarKuwait

Guinea

Singapore Jordan

India

TogoHaiti

Palestine
Afghanistan

Angola

Serbia
Uganda

Iraq MalaysiaUkraine

Lebanon

Zambia Tanzania

Central African Republic

Fiji

Mali
KenyaMorocco ColombiaPhilippines Hungary

Bhutan

Madagascar

Lesotho
Honduras

Indonesia
Sri Lanka

Kyrgyzstan
Kosovo

Guatemala
Nepal

Mozambique Macedonia

Paraguay
Bosnia and Herzegovina

Ivory Coast Hong Kong

Romania
Albania

Brazil
El SalvadorMontenegro

Dominican RepublicMoldova

Gabon

Papua New Guinea Niger

Croatia

Armenia

The Gambia

Bolivia
Nigeria

Timor−Leste

Poland MongoliaBulgaria

Israel

Burkina Faso

Malawi

South Africa

Ecuador

Liberia
Sierra Leone

Peru
NamibiaBotswana

BeninSenegal

Georgia

Malta Tunisia
Slovakia

Ghana
Argentina

Greece
Vanuatu

Taiwan

Jamaica

United States of America

Austria JapanSlovenia Lithuania
Czech Republic Chile

Italy
South Korea

France

Australia
Cyprus

United Kingdom
Spain

Canada

Latvia

GermanyCosta Rica

Uruguay
Netherlands

New Zealand
Portugal

Ireland

Iceland

BelgiumFinland

EstoniaSwitzerland SwedenNorway

Denmark

Study of custom glyph construction
and placement in reference graphic

Reference design by Nadieh Bremer.
Data source: v−Dem.

13

	Reference graphic
	Reference individual glpyh encodings
	Reference glyph placements

	Tools
	Collecting the data
	Reconstruction
	Coding the glyph
	Preparing the basic structure
	First layer: gray petals encoding idea measures
	Second layer: colored and sized petals encoding high measures
	Third layer: colored and sized petals encoding low measures
	Fourth layer: adding stems and text label for country

	Placing glyphs on the plot relative to each other

