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Preface

What’s the probability of persuasion given objectives, audi-
ence, data, analysis, design, and storytelling? In this book, I aim to
explore the question. The literature of writing, and of persuasive
communication is rarely taught alongside the literature for collecting,
cleaning, visualizing, modeling, understanding, and communicating
quantitative information. Pedagogy of persuasive communication in
data science literature generally lacks the rigor of that taught else-
where. I aim to provide coherency across various literature, and
invite us to think, consider the perspectives of those authors, and
question their opinions. I also encourage readers to go further, to be
curious about what more they may learn from the cited references (I
chose them with purpose). In short, I have active learners in mind:

An active learner asks questions, considers alternatives, questions
assumptions, and even questions the trustworthiness of the author or
speaker. An active learner tries to generalize specific examples, and
devise specific examples for generalities.

An active learner doesn’t passively sponge up information — that
doesn’t work! — but uses the readings and lecturer’s argument as a
springboard for critical thought and deep understanding.

To encourage adventure into ideas, I’ve included rabbit holes, like so:

Rabbit Hole. Going down the rabbit hole is a phrase borrowed from
Alice’s Adventures in Wonderland1, a story of adventure and exploration 1 Lewis Carroll, Alice’s Adventures in

Wonderland and Other Stories (Canter-
bury Classics, 2013).

of new, interesting, and seemingly strange worlds. In these remarks, I
encourage you to explore as Alice did.

To help the active learner, I’ve provided examples and exercises
throughout this text, like this:

Exercise 0.1 (An example exercise callout). In Lewis Carroll’s beloved
work, Alice encounters numerous characters during her adventure in
wonderland. Does she listen to advice? Does she question advice?





1
Introduction

If storytelling seems out of place in this study, consider that
the truly unique feature of human language is “the ability to transmit
information about things that do not exist at all. . . ”1 Just as Alice’s 1 Yuval Noah Harari, Sapiens: A Brief

History of Humankind (London: Harvill
Secker, 2014).

Wonderland does not exist, so too with data and algorithms — we
cannot taste them, smell them, or touch them. They are mere con-
cepts that represent things humans care about. Stories add a valuable
communication tool to get others to act on what we learn from data.
Storytelling with data is especially challenging. Maybe you’ve heard
the advice, write what you know. You should. Commonly, data an-
alytics projects require multiple skills and ideas, skills in creative
problem solving and ideation, mathematics, probability, statistics,
programming, subject matter or domain knowledge, and across all
these, the ability to communicate well to all interested or involved.

We need to know all aspects of our current project well enough
to explain them — to explain them well enough to persuade our
audiences of our insights, and to act on them. And it is the goal of
persuasion that proves most difficult: Harari writes, “the difficulty
lies not in telling the story, but in convincing everyone else to believe
it. . . ” You will meet this challenge by studying well-crafted commu-
nication, and practicing! Indeed,

Learners need to practice, to imitate well, to be highly motivated,
and to have the ability to see likenesses between dissimilar things in
[domains ranging from creative writing to mathematics].2 2 Berys Gaut, “Educating for Creativity,”

in The Philosophy of Creativity: New
Essays, ed. Elliot Samuel Paul (New
York: Oxford University Press, 2014),
265–87.

Along the way, I will guide you to additional resources, beyond the
minimum. It’s up to you to study them and share what you learn
with your peers. And you should expect to learn from your peers be-
cause they will have studied ideas from these readings, as have you,
and will bring their own understanding, opinions, and experiences
with the material to enrich our discussions.
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1.1 Communication throughout project progression

With what projects will we apply communication skills?
In the course intended with this book, each of you will have your

own project. Your project requires you to identify a company or
organization in which you are interested. It requires you to identify
a problem that entity faces, or an opportunity they may not have
fully explored. The project requires you to locate publicly available
data. Soon you will see exemplary data. You will analyze that data,
through statistical summaries, visualizations, and maybe even some
modeling. And you will communicate your insights using sentences
— messages — and graphics in multiple forms, with varying goals,
and to different audiences.

Exercise 1.1 (Research possible projects). Research potential projects
interesting to you. Identify a problem that entity faces, or an opportu-
nity they may not have fully explored. Locate publicly available data.
Consider for what questions the data are potentially relevent to the
problem or opportunity.

You will use your deliverables to practice what we learn. These
include, but are not limited to, a memo and proposal, written to the
head of analytics; a communication, created for the head of mar-
keting; an infographic, to inform a more general audience; a pre-
sentation, to persuade the chief executive officer to further invest
in analytics. We will consider examples of these. Each of these de-
liverables is an opportunity to apply various forms of, and ideas in,
communication, from the structure, meaning, and persuasive quali-
ties of words and sentences, to visual organization, data encodings,
and design of information. Here’s a conceptual project timeline:

WRITE MEMO PITCHING 
IDEA TO CHIEF 

ANALYTICS OFFICER

IDEATE A DATA 
ANALYTICS PROJECT 

ADDRESSING PROBLEM 
OR OPPORTUNITY

COMMUNICATE PROJECT 
AND RESULTS FOR CHIEF 

MARKETING OFFICER

WRITE A PROJECT 
PROPOSAL TO CHIEF 
ANALYTICS OFFICER

CRITIQUE EXEMPLARY 
INFOGRAPHIC

CREATE INFOGRAPHIC 
OF PROJECT & RESULTS 

FOR CONSUMERS

FEEDBACK TO PEER 
PRESENTATIONS

PERSUASIVE 
PRESENTATION TO CHIEF 

ANALYTICS OFFICER

CONDUCT DATA ANALYSIS

YOU 
ARE 

HERE

Figure 1.1: Conceptual project timeline,
from ideating a project through analysis
and completion that provides the basis
for various communications.1.2 Building your persuasive portfolio

This project progression should enable students to develop
a portfolio of persuasive communication. The importance of such
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a portfolio is well understood in various fields of study. “As your
ultimate persuasive tool, your portfolio is the single most important
design exercise of your academic and professional career.”3 If you 3 Margaret Fletcher, Constructing the

Persuasive Portfolio: The Only Primer
You’ll Ever Need (New York: Routledge,
Taylor & Francis Group, 2017).

have not already begun, start now. With this book.

1.3 Receiving and providing criticism

Criticism — the analysis of the merits and weaknesses of a work
supported by well-developed theories — is vital for our improve-
ment. In a course imagined for this material, your colleagues and I
will try to help you with your draft work. They will do this by learn-
ing alongside you and practice providing criticism of your work, not
of you. Criticism, here, is not to be understood as negative. Instead, it
should be understood as an opportunity for you and your colleague.

Your colleague, in reviewing your draft work, will practice ap-
plying the concepts we’ve learned in class, and bring their own ex-
periences into their review of your draft work. It is a time for them
to practice, in that sense. If it is difficult to well apply the concepts
we discuss to one’s own work, it is yet more difficult to teach others
through criticism. You will do this too — you are them. Meaning, you
will be someone else’s critic that helps them. I will be guiding each of
you in learning to provide criticism.

On the flip side, you will gain most valuable fresh eyes and per-
spective to improve your drafts. Your critics will undoubtedly see
problems you didn’t, and consider solutions you haven’t. When
you have wowed your next client or employer with the persuasive
portfolio you have developed, consider reaching out to thank your
colleagues for their criticism. And pay it forward.

Figure 1.2: Jean-luc Doumont is an
engineer from the Louvain School
of Engineering. He earned his PhD
in applied physics from Stanford
University. He wrote his book to help
engineers, scientists, and managers with
business communication. The book
succeeds both in its instruction by as
exemplary communication.

Doumont4 provides thoughtful advice on how to approach criti-

4 Jean-Luc Doumont, Trees, Maps, and
Theorems, Effective Communication
for Rational Minds (Principiæ, 2009),
Reviewing documents of others.

cism. When reviewing someone else’s document, center yourself on
the purpose you both agree upon, such as clarity, accuracy, or correct-
ness. Should this purpose be multiple, review one aspect at a time,
focusing on content first. As a critique, focus less on typographic er-
rors. Typos are usually more conspicuous than reasoning flaws, but
also less important. As a critique, in your comments to the authors,
strive to help, not to judge. Finally, structure the review. Provide
a global assessment, to place further comments in proper perspec-
tive. As a rule, point out the weaknesses, to prompt improvements,
but also the strengths, to increase the authors’ willingness to revise
the document and to learn. Your criticism should be in the form of
applying the language and concepts we study.
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Communication for applied analytics, challenges and scope

2.1 Introduction

A noted psychologist once said, “One cannot not communi-
cate.”1 We will consider how Watzlawick’s concept reveals itself in all 1 Paul Watzlawick, Janet Beavin Bavelas,

and Don D Jackson, Pragmatics of
Human Communication: A Study of
Interactional Patterns, Pathologies and
Paradoxes (W. W. Norton & Company,
2017).

aspects of applied analytics, especially in today’s collaborative envi-
ronments, but even so when working solo: after all, your future self is
also your audience. We plan to explore and test this idea throughout
the course, throughout the life of your data analytics project.

2.2 Communication in data analytics

The qualities we need in an analytics team, writes Berinato2, in- 2 Scott Berinato, “Data Science & the Art
of Persuasion,” Harvard Business Review,
December 2018, 1–13.

clude project management, data wrangling, data analysis, subject
expertise, design, and storytelling. For that team to create value, they
must first ask smart questions, wrangle the relevant data, and un-
cover insights. Second, the team must figure out — and communicate
— what those insights mean for the business.

Figure 2.1: Scott Berinato is senior
editor at Harvard Business Review.

These communications can be challenging, however, as an interpre-
tation gap frequently exists between data scientists and the executive
decision makers they support.3

3 Chris Brady, Mike Forde, and Simon
Chadwick, “Why Your Company
Needs Data Translators,” MIT Sloan
Management Review, March 2017, 1–6.

How can we address such a gap?
Brady and his co-authors argue that data translators should bridge

the gap, address data hubris and decision-making biases, and find
linguistic common ground. Subject-matter experts should be taught
the quantitative skills to bridge the gap because, they continue, it is
easier to teach quantitative theory than practical, business experience.

Figure 2.2: Brady is a professor and
consultant focusing on sports manage-
ment.

Before delving into the above arguments, let’s first consider from
what perspective we’re reading. Both perspectives are written for
business executives, Berinato writes in the Harvard Business Review,
Brady and his co-authors write from MIT Sloan Management Review.
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According to HBR, their “readers have power, influence, and poten-
tial. They are senior business strategists who have achieved success
and continue to strive for more. Independent thinkers who embrace
new ideas. Rising stars who are aiming for the top.”4 Similarly, MIT 4 “HBR Advertising and Sales,” Harvard

Business Review (https://hbr.org/hbr-
advertising-sales, n.d.).

Sloan Management Review reports their audience: “37% of MIT SMR
readers work in top management, while 72% confirm that MIT SMR
generates a conversation with friends or colleagues.”5 Further, all 5 “Print Advertising Opportunities,”

Business, MIT Sloan Management Review
(https://sloanreview.mit.edu/advertise/print/,
2020).

authors are in senior management. Berinato is senior editor. Brady
and co-authors are consultants focusing on sports management. Why
might it be important we know both an author’s background and
their intended audience?

Perhaps it is not surprising for a senior executive to conclude that
it would be easier to teach data science skills to a business expert
than to teach the subject of a business or field to those already skilled
in data science. Is this generally true? Might the background of a
data translator depend upon the type of business or type of data
science? Is it appropriate for this data translator be an individual?
Berinato argues that data science work requires a team. Might the
responsibility of a data translator be shared?

Bridging the gap requires developing a common language. Senior
management do not all speak the language of analysts. Decision
makers seek clear ways to receive complex insights. Plain language,
aided by visuals, allow easier absorption of the meaning of data.
Along with common language, data translators should foster better
communication habits. Begin with questions, not assertions. Then,
use analogies and anecdotes that resonate with decision makers.
Finally, whomever fills this role, they must hone their skills, skills
that include business and analytics knowledge, but also must learn
to speak the truth, be constantly curious to learn, craft accessible
questions and answers, keep high standards and attention to detail,
be self-starters.

2.3 Communication begins with content

If a challenge in communicating is to write what you know, in the
context of data analytics, we must understand what we mean by such
a project. We begin with data.

2.3.1 Data

Implied in the phrase data analytics project, we need data for such a
project. What, then, are data? Let’s consider what Kelleher6 has to 6 John D Kelleher and Brendan Tierney,

Data Science (MIT Press, 2018).say in the aptly titled chapter, What are data, and what is a data set?
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Consider these definitions:

datum : an abstraction of a real-world entity (person, object, or event).
The terms variable, feature, and attribute are often used interchange-
ably to denote an individual abstraction.

Data are the plural of datum.

data set : consists of the data relating to a collection of entities, with
each entity described in terms of a set of attributes. In its most basic
form, a data set is organized in an n ·m data matrix called the analytics
record, where n is the number of entities (rows) and m is the number of
attributes (columns).

Data may be of different types, including nominal, ordinal, and nu-
meric. These have subtypes as well. Nominal types are names for
categories, classes, or states of things. Ordinal types are similar to
nominal types, except that it is possible to rank or order categories
of an ordinal type. Numeric types are measurable quantities we can
represent using integer or real values. Numeric types can be mea-
sured on an interval scale or a ratio scale. The data attribute type is
important as it affects our choice of analyses and visualizations.

Data can also be structured (like a table) or unstructured (like the
words in this document). And data may be in a raw form such as
an original count or measurement, or it may be derived, such as an
average of multiple measurements. Normally, the real value of a data
analytics project is in using statistics or modeling to derive one or
more attributes that provide insight into a problem.

Finally, existing data originally for one purpose may be used in an
observational study, or we may conduct controlled experiments to
generate data.

2.3.2 Context

Data measurements never reveal all aspects relevant to their genera-
tion or impact upon our analysis7. Loukissas provides several inter- 7 Yanni A. Loukissas, All Data Are Local:

Thinking Critically in a Data-Driven
Society (Cambridge, Massachusetts: The
MIT Press, 2019).

esting examples where the local information that generated the data
matters greatly in whether we can fully understand the recorded, or
measured data. His examples include plant data in an arboretum,
artifact data in a museum, collection data at a library, information
in the news as data, and real estate data. Using these examples, he
convincingly argues we need to shift our thinking from data sets to
data settings.

Let’s consider another example, from baseball. In the game, a bat-
ter that hits the pitched ball over the outfield fence between the foul
poles scores for his team — he hits a home run. But a batter’s home
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run count in a season does not tell us the whole story of their ability
to hit home runs. Let’s consider some of the context in which a home
run occurs. Batters hit a home run pitched by a specific pitcher, in a
specific stadium, in specific weather conditions. All of these circum-
stances contribute to the existence of a home run event, but that con-
text isn’t typically considered. Sometimes partly, rarely completely.

Perhaps obviously, all pitchers have different abilities to pitch a
ball in a way that affects a batter’s ability to hit the ball. Let’s leave
that aside for the moment, and consider more concrete context.

In Major League Baseball there are 30 teams, each with its own
stadium. But each stadium’s playing field is differently sized than
the others, and each stadium’s outfield fence has uneven heights and
is different than other stadium fences! This context is made clear in
an award-winning visualization8. So we can’t fully appreciate any 8 Sam Vickars, “The Irregular Outfields

of Baseball,” Business, The Data Face,
April 2019, winner Kantar Information
is Beautiful Awards 2019.

specific home run event without knowing where it occurred.
Further, the trajectory of a hit baseball depends heavily on charac-

teristics of the air, including density and wind speed and direction9. 9 Robert K Adair, The Physics of Baseball,
Third (HarperCollins, 2017).The ball will not travel as far in cold, humid, dense air. And density

depends on temperature, altitude, and humidity. A few stadiums
have a roof with conditioned air protected somewhat from weather.
But most are exposed. Thus, we would learn more about the qualities
of a particular home run if understood in the context of these data.

Other aspects of this game are equally context-dependent. Con-
sider each recorded ball or strike, an event made by the umpire when
the batter does not swing at the ball. The umpire’s call is intended to
describe location of the ball as it crosses home plate. But error exists
in that measurement. It depends on human perception. We have in-
dependent measurements by a radar system (as of 2008). But that too
has measurement error we can’t ignore. Firstly, there are 30 separate
radar systems, one for each stadium. Secondly, those systems require
periodic calibration. And calibration requires, again, human interven-
tion. Moreover, the original radar systems installed in these stadiums
in 2007 are no longer used. Different systems have been installed and
used in their place. Thus, to fully understand the historical location
of each pitched baseball means we must research and investigate
these systems.

So when we really want to understand an event and compare
among events (comparison is crucial for meaning), context matters.
We’ve seen this in the baseball example, and in Loukissas’s several
fascinating case study examples in many types of data. When we
communicate about data, we should consider context, data settings.
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2.3.3 Scoping a data analytics project

To communicate about a data analytics project, we first must under-
stand the scope and breadth of this type of project before we com-
municate of it. On a high-level, it involves an iterative progression of
the identification and understanding of decisions, goals and actions,
methods of analysis, and data.

The framework of identifying goals and actions, and following
with information and techniques gives us a structure not unlike
having the outline of a story, beginning with why we are working
on a problem and ending with how we expect to solve it. Just as
stories sometimes evolve when retold, our ideas and structure of the
problem may shift as we progress on the project. But like the well-
posed story, once we have a well-scoped project, we should be able
to discuss or write about its arc — purpose, problem, analysis and
solution — in relevant detail specific to our audience.

Specificity in framing and answering basic questions is important:
What problem is to be solved? Is it important? Does it have impact? Do
data play a role in solving the problem? Are the right data available? Is the
organization ready to tackle the problem and take actions from insights?
These are the initial questions of a data analytics project. Project
successes inevitably depend on our specificity of answers. Be specific.

2.3.4 Defining goals, actions, and problems

Identifying a specific problem is the first step in any project. And
a well-defined problem illuminates its importance and impact. The
problem should be solvable with identified resources. If the prob-
lem seems unsolvable, try focusing on one or more aspects of the
problem. Think in terms of goals, actions, data, and analysis. Our
objective is to take the outcome we want to achieve and turn it into a
measurable and optimizable goal.

Consider what actions can be taken to achieve the identified goal.
Such actions usually need to be specific. A well-specified project ide-
ally has a set of actions that the organization is taking — or can take
— that can now be better informed through data science. While im-
proving on existing actions is a good general starting point in defin-
ing a project, the scope does not need to be so limited. New actions
may be defined too. Conversely, if the problem stated and anticipated
analyses does not inform an action, it is usually not helpful in achiev-
ing organizational goals. To optimize our goal, we need to define the
expected utility of each possible action.
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2.3.5 Identifying accessible data

Do data play a role in solving the problem? Before a project can
move forward, data must be both accessible and relevant to the prob-
lem. Consider what variables each data source contributes. While
some data are publicly available, other data are privately owned and
permission becomes a prerequisite. To be sure, obtaining the right
data is usually a top challenge: sometimes the variable is unmea-
sured or not recorded.

In cataloging the data, be specific. Identify where data are stored
and in what form. Are data recorded on paper or electronically, such
as in a database or on a website? Are the data structured — such
as a CSV file — or unstructured, like comments on a twitter feed?
Provenance is important10: how were the data recorded? By a human 10 Luc Moreau et al., “The Provenance of

Electronic Data,” Communications of the
ACM 51, no. 4 (April 2008): 52–58.

or by an instrument?
What quality are the data11? Measurement error? Are observations

11 Wenfei Fan, “Data Quality: From
Theory to Practice,” SIGMOD Record 44,
no. 3 (September 2015): 7–18.

missing? How frequently is it collected? Is it available historically, or
only in real-time? Do the data have documentation describing what
it represents? These are but a few questions whose answers may
impact your project or approach. By extension, it affects what and
how you communicate.

2.3.6 Identifying the analyses and tools

The workflow needed to bridge the gap between raw data and ac-
tions typically involves an iterative process of exploratory and con-
firmatory analysis12, see Figure 2.3, which employs visualization, 12 Xiaoying Pu and Matthew Kay,

“The Garden of Forking Paths in
Visualization: A Design Space for
Reliable Exploratory Visual Analytics,”
in BELIV Workshop 2018, 2018, 1–9.

transformation, modeling, and testing.

2.3.7 Estimating constraints and finances

Can the identified project be completed within constraints in time to
support the relevant actions and decisions?

2.3.8 Writing to clarify and communicate

Writing is part and parcel to the analysis.

I write entirely to find out what I’m thinking, what I’m looking at,
what I see, and what it means.

— Joan Didion, What I Write

We generally revise our written words and refine our thoughts to-
gether; the improvements made in our thinking and improvements
made in our writing reinforce each other.13 Clear writing signals 13 Joshua Schimel, Writing Science:

How to Write Papers That Get Cited and
Proposals That Get Funded (Oxford ; New
York: Oxford University Press, 2012).
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Exploratory analysis Confirmatory analysis

Population

Training data Testing data

Model & Model

Fit
Observe data, formulate
models, hypotheses
Correct for forking paths
problems (e.g., multiple
comparison correction,
regularization)

Evaluate
Assess overfitting
(Internal validation,
e.g., cross validation)

Evaluate
Assess overfitting
(External validation)

Use/Dissemination

analyst’s mental model

Figure 2.3: Analytic component of a
general statistical workflow.

clear thinking. To test our project, then, we should clarify it in writ-
ing. Once it is clear, we can begin the processes of data collection,
further clarify our understanding, begin technical work, again clar-
ify our understanding, and continuing the iterative process until we
converge on interesting answers that support actions and goals.

2.3.9 Applying project scope: Citi Bike

Let’s develop the concept of project scope in the context of an exam-
ple, one to help the bike share sponsored by Citi Bike.

Figure 2.4: This Citi Bike docking
station has available bikes and at least
one available docking slot.

You may have heard about, or even rented, a Citi Bike in New
York City. Researching the history, we learn that in 2013, the New
York City Department of Transportation sought to start a bike share to
reduce emissions, road wear, congestion, and improve public health.
After selecting an operator and sponsor, the Citi Bike bike share was
established with a bike fleet distributed over a network of docking sta-
tions throughout the city. The bike share allows customers to unlock
a bike at one station and return it at any other empty dock. Citi Bike
spokeswoman Dani Simons has explained14, 14 Matthew Friedman, “Citi Bike Racks

Continue to Go Empty Just When
Upper West Siders Need Them,” News,
West Side Rag, August 2017.

Rebalancing is one of the biggest challenges of any bike share system,
especially in a city like New York where residents don’t all work a tra-
ditional 9-5 schedule, and though there is a Central Business District,
it’s a huge one and people work in a variety of other neighborhoods
as well. At Citi Bike we’ve tried to be innovative in how we meet this
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challenge.

By rebalancing, she means ensuring continuous availability of both
bikes and docking slots at each station. So we’ve just described busi-
ness objectives, and a related problem or opportunity. Might this be
a problem we can find available data and conduct analyses to inform
the City’s actions and further its goals?

Exercise 2.1 (Identify behaviors, events, data, sources, and context).
Explore the availability of bikes and docking spots as depending on
users’ patterns and behaviors, events and locations at particular times,
other forms of transportation, and on environmental context.

What events may be correlated with or cause empty or full bike
docking stations? What potential user behaviors or preferences may
lead to these events? From what analogous things could we draw
comparisons to provide context? How may these events and behaviors
have been measured and recorded? What data are available? Where are it
available? In what form?

In what contexts are the data generated? In what ways may we
find incomplete or missing data, or other errors in the stored measure-
ments?

May these data be sufficient to find insights through analysis, useful
for decisions and goals?

Answers to questions as these provide necessary material for commu-
nication. Before digging into an analysis, let’s discuss workflow.

2.4 Workflow for credible communication

Truth is tough. It will not break, like a bubble, at a touch; nay, you may
kick it about all day, like a football, and it will be round and full at
evening.

— Oliver W. Holmes, The Professor at the Breakfast-Table

Persuasive communication is credibly truthful, which means
that our critics can test our language, our information, our method-
ologies, from start to finish. That others have not done so led to the
reproducibility crisis noted in Nature15: 15 Monya Baker, “Is There a Repro-

ducibility Crisis?” Nature 533, no. 26

(May 2016): 452–54.More than 70% of researchers have tried and failed to reproduce an-
other scientist’s experiments, and more than half have failed to repro-
duce their own experiments.

By reproducibility, this meta-analysis considers whether replicating
a study resulted in the same statistically significant finding (some
have argued that reproducibility as a measure should compare, say, a
p-value across trials, not whether the p-value crossed a given thresh-
old in each trial). Regardless, we should reproducibly build our data
analyses like Holmes’s football, for our critics (later selves included)
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to kick it about. What does this require? Ideally, our final product
should include all components of our analysis from thoughts on our
goals, to identification of — and code for — collection of data, visu-
alization, modeling, reporting and explanations of insights. In short,
the critic, with the touch of her finger, should be able to reproduce
our results from our work. Perhaps that sounds daunting. But with
some planning and use of modern tools, reproducibility is usually
practical. Guidance on assessing reproducibility and a template for
reproducible workflow is described by Kitzes and co-authors16, along 16 Justin Kitzes, Daniel Turek, and

Fatma Deniz, The Practice of Reproducible
Research, Case Studies and Lessons from
the Data-Intensive Sciences (University
of California Press, 2018).

with a collection of more than 30 case studies. The authors identify
three general practices that lead to reproducible work, to which I’ll
add a fourth:

1. Clearly separate, label, and document all data, files, and operations
that occur on data and files.

2. Document all operations fully, automating them as much as pos-
sible, and avoiding manual intervention in the workflow when
feasible.

3. Design a workflow as a sequence of small steps that are glued
together, with intermediate outputs from one step feeding into the
next step as inputs.

4. The workflow should track your history of changes.

Several authors17 describe modern tools and approaches for cre- 17 Christopher Gandrud, Reproducible
Research with R and RStudio, Third
edition, The R Series (Boca Raton, FL:
CRC Press, 2020); Kieran Healy, “The
Plain Person’s Guide to Plain Text
Social Science” (April 2018).

ating a workflow that leads to reproducible research supporting
credible communication.

The workflow should include the communication. And the com-
munication includes the code. What? Writing code to clean, trans-
form, and analyze data may not generally be thought of as commu-
nicating. But yes! Code is language. And sometimes showing code is
the most efficient way to express an idea. As such, we should strive
for the most readable code possible. For our future selves. And for
others. For code style advice, consult The Art of Readable Code18 and 18 Dustin Boswell and Trevor Foucher,

The Art of Readable Code (O’Reilly, 2011).The Pragmatic Programmer.19

19 David Thomas and Andrew Hunt,
The Pragmatic Programmer, 20th An-
niversary, Your Journey to Mastery
(Addison-Wesley, 2020).

Next, we review an example, a reproducible workflow created
from a few software tools (R, markdown, Stan), from identifying
the business goals and problem, to considering data, performing
analysis, and tying the analysis to decision making.





3
An example, reproducible workflow

Let’s consider this example workflow of a project from beginning
to end, starting with the (hypothetical) scenario and the observed
(simulated) data, then fitting a series of Bayesian models in Stan

and exploring them in R, and finally, using the models to enable
decision-making. Our objective here is to consider an example, fully
reproducible workflow. This workflow consists of including R and
Stan code as blocks directly into the formatted-text narrative, of
which the code and its executed results knitted together into the result
you are reading. Of note, consider the primary audience is not you;
the audiences are those relevant to that project.

Exercise 3.1 (Identify components of scope in workflow). As you
review the example, reproducible workflow, consider whether, and
with what detail, the example includes what we’ve discussed about the
elements and scope of a data analytics project. What do you find? Any
description of an iterative approach in the described analysis?

3.1 Background and problem

Our analysis responds to an owner of many residential buildings
throughout New York City. The property manager explains that they
are concerned about the number of complaints about loud music they
receive from residents. Previously the company has offered monthly
visits from a sound engineer to monitor decibel levels as a solution
to this problem. While this is the default solution of many property
managers in NYC, the residents are rarely home when the sound
engineer visits, and so the manager reasoned that this is a relatively
expensive solution that is currently not very effective.

One alternative is to deploy noise canceling devices — sound
traps. In this alternative, they are installed throughout the building.
The manufacturer of these sound traps provides some indication of
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the device efficacy, but the manager suspects that this guidance was
not calculated with NYC buildings in mind. In NYC, the manager
rationalizes, sound carries more than elsewhere; and NYC buildings
are built differently than other common residential buildings in the
US. This is particularly important as the unit cost for each sound trap
per year is high.

3.2 The goal

The manager has asked for help to find the optimal number of sound
traps that should be placed in each of their buildings to minimize
the number of noise complaints while also keeping expenditure on
sound control affordable.

A subset of the company’s buildings has been randomly selected
for an experiment:

• At the beginning of each month, a sound engineer randomly
places a number of sound traps throughout the building, with-
out knowledge of the current decibel levels in the building.

• At the end of the month, the manager records the total number of
complaints in that building.

• The manager would like to determine the optimal number of
sound traps (traps) that balances the lost revenue (R) that com-
plaints generate with the all-in cost of maintaining the traps (TC).

Bayesian data analysis provides a coherent framework for us to
tackle this problem. Formally, we are interested in finding the num-
ber of traps that maximizes

E(R(complaints(traps))− TC(traps)),

where the expectation averages over the distribution of complaints,
conditional on the number of traps installed.

The property manager would also, if possible, like to learn how
these results generalize to buildings they haven’t setup the devices so
they can understand the potential costs of sound control at buildings
they are acquiring as well as for the rest of their building portfolio.

As the property manager has complete control over the number of
traps set, the random variable contributing to this expectation is the
number of complaints given the number of traps. We will model the
number of complaints as a function of the number of traps.

3.3 The data



p( persuasion | data, analysis, storytelling ) 25

The owner has provided data for this problem representing data
from 10 buildings in 12 successive months, thus 120 data points in
total. Our initial, observed variables and their types are listed in table
3.1.

variable class examples

mus numeric 0.4, 0.4, 0.3, 0.1, ...
building_id integer 37, 37, 37, 37, ...
wk_ind integer 1, 2, 3, 4, ...
date Date "2017-01-15", "2017-02-14", "2017-03-16", "2017-04-15", ...
traps integer 8, 8, 9, 10, ...

floors integer 8, 8, 8, 8, ...
sq_footage_p_floor numeric 5149, 5149, 5149, 5149, ...
live_in_super integer 0, 0, 0, 0, ...
monthly_average_rent numeric 3846.9, 3846.9, 3846.9, 3846.9, ...
average_tenant_age numeric 53.9, 53.9, 53.9, 53.9, ...

age_of_building integer 47, 47, 47, 47, ...
total_sq_foot numeric 41192.1, 41192.1, 41192.1, 41192.1, ...
month integer 1, 2, 3, 4, ...
complaints integer 1, 3, 0, 1, ...

Table 3.1: Initial, observed variables for
analysis.

These are the variables we will be using:

building_id: The unique building identifier

traps: The number of sound traps used in the building in that month

floors: The number of floors in the building

live_in_super: An indicator for whether the building as a live-in
superintendent

monthly_average_rent: The average monthly rent in the building

average_tenant_age: The average age of the tenants in the building

age_of_building: The age of the building

total_sq_foot: The total square footage in the building

month: Month of the year

complaints: Number of complaints in the building in that month

We have data for 10 buildings. Let’s explore the data graphically.
Firstly, we consider a histogram, figure 3.1, of the number of com-
plaints in the 120 building-months in the data.

The pattern of this count data seems to be consistent with a Poisson
distribution. Next, we graphically review complaints versus traps,
shown in figure 3.2. Each dot represents a building-month, color-
encoded for a live-in super and an off-premises super.

Graphing these variables over time, figure 3.3, we see no obvious
patterns common to all locations.
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Figure 3.1: Frequency of the number of
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Figure 3.2: Number of complaints as
a function of number of traps. Blue
indicates a live-in super while brown
indicates an off-premises super.

We will first analyze the association of the number of traps with
the number of complaints, ignoring systematic variation over time
and across buildings (we’ll come back to those sources of variation
later). That requires only two variables, complaints and traps. How
should we model the number of complaints? We will demonstrate
using a Bayesian workflow of model building, model checking, and
model improvement.

3.4 Modeling count data: Poisson distribution

We already know some rudimentary information about what
we should expect. The number of complaints over a month should
be either zero or a positive integer. The property manager tells us
that it is possible but unlikely that number of complaints in a given
month is zero. Occasionally there are a large number of complaints
in a single month. A common way of modeling this sort of skewed,
single bounded count data is as a Poisson random variable. One
concern about modeling the outcome variable as Poisson is that the
data may be over-dispersed, but we’ll start with the Poisson model
and then check whether over-dispersion is a problem by comparing
our model’s predictions to the data.

3.4.1 Model

Given that we have chosen a Poisson regression, we define the like-
lihood to be the Poisson probability mass function over the num-
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Figure 3.3: Time series of traps and
complaints for each building in figure
3.3, again coloring live-in supers and
off-premises supers. These data are
graphed alongside the number of traps,
shown as a dashed (− − −) line.
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ber of traps placed in the building, denoted below as traps. This
model assumes that the mean and variance of the outcome variable
complaints (number of complaints) is the same. We’ll investigate
whether this is a good assumption after we fit the model. For build-
ing b = 1, . . . , 10 at time (month) t = 1, . . . , 12, we have

complaintsb,t ∼ Poisson(λb,t)

λb,t = exp (ηb,t)

ηb,t = α + β trapsb,t

Let’s encode this probability model in a Stan program (compiled into
R object comp_model_P). Stan code.

functions {

int poisson_log_safe_rng(real eta) {

real pois_rate = exp(eta);

if (pois_rate >= exp(20.79))

return -9;

return poisson_rng(pois_rate);

}

}

data {

int<lower=1> N;

int<lower=0> complaints[N];

vector<lower=0>[N] traps;

}

parameters {

real alpha;

real beta;

}

model {

beta ~ normal(-0.25, 1);

alpha ~ normal(log(4), 1);

complaints ~ poisson_log(alpha + beta * traps);

}

generated quantities {

int y_rep[N];

for (n in 1:N)

y_rep[n] = poisson_log_safe_rng(alpha + beta * traps[n]);

}

Before we fit the model to the data that have been given to us, we
should check that our model works well with data that we have
simulated ourselves. We’ll simulate data according to the model
(compiled into R object comp_dgp_simple) and then check that we can
sufficiently recover the parameter values used in the simulation. Stan code.

data {

int<lower=1> N;

real<lower=0> mean_traps;

}

model {
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}

generated quantities {

int traps[N];

int complaints[N];

real alpha = normal_rng(log(4), 0.1);

real beta = normal_rng(-0.25, 0.1);

for (n in 1:N) {

traps[n] = poisson_rng(mean_traps);

complaints[n] = poisson_log_rng(alpha + beta * traps[n]);

}

}

For the compiled Stan program comp_dgp_simple, We simulate fake
data by calling the sampling() function. R code.

fitted_model_dgp <-

sampling(comp_dgp_simple,

data = list(N = nrow(noise_data),

mean_traps = mean(noise_data$traps)),

chains = 1, iter = 1,

algorithm = ’Fixed_param’,

seed = 123)

We now extract the sampled data and look at its structure in R: R code.

sims_dgp <- rstan::extract(fitted_model_dgp)

str(sims_dgp)

List of 5

$ traps : num [1, 1:120] 7 5 8 11 9 6 5 6 8 9 ...

..- attr(*, "dimnames")=List of 2

.. ..$ iterations: NULL

.. ..$ : NULL

$ complaints: num [1, 1:120] 0 1 0 0 0 0 0 0 1 0 ...

..- attr(*, "dimnames")=List of 2

.. ..$ iterations: NULL

.. ..$ : NULL

$ alpha : num [1(1d)] 1.29

..- attr(*, "dimnames")=List of 1

.. ..$ iterations: NULL

$ beta : num [1(1d)] -0.283

..- attr(*, "dimnames")=List of 1

.. ..$ iterations: NULL

$ lp__ : num [1(1d)] 0

..- attr(*, "dimnames")=List of 1

.. ..$ iterations: NULL

To pass the fake data to our Stan program using RStan, we need to
arrange the data into a named list. The names must match the names
used in the data block of the Stan program. R code.

stan_dat_fake <- list(N = nrow(noise_data),

traps = sims_dgp$traps[1, ],

complaints = sims_dgp$complaints[1, ])

Now that we have the simulated data we fit the model to see if we
can recover the alpha and beta parameters used in the simulation. R code.



30 scott spencer

fit_model_P <- sampling(comp_model_P,

data = stan_dat_fake,

seed = 123,

chains = 4, cores = 4)

posterior_alpha_beta <- as.matrix(fit_model_P, pars = c(’alpha’,’beta’))

parameters

iterations alpha beta

[1,] 1.857192 -0.3925038

[2,] 1.752724 -0.3919860

[3,] 1.745682 -0.3960594

[4,] 1.790196 -0.3756891

[5,] 1.805990 -0.4062681

[6,] 1.891166 -0.3893186

3.4.2 Assess parameter recovery

We graphically compare, in figure 3.4, the known (simulated) values
of the parameters to their estimated posterior distributions.

alpha beta

0.5 1.0 1.5 2.0 −0.55 −0.45 −0.35 −0.25 −0.15

Figure 3.4: Compare known values to
posterior distributions.

The posterior uncertainties are large here, but the true values are well
within the inferential ranges. If we did the simulation with many
more observations the parameters would be estimated much more
precisely while still including the true values (assuming the model
has been programmed correctly and the simulations have converged).

We also check if the y_rep datasets (in-sample predictions) that
we coded in the generated quantities block are similar to the y

(complaints) values we conditioned on when fitting the model.
Figure 3.5 is a plot of the density estimate of the observed data

compared with 200 estimates of the data.

0.0 2.5 5.0 7.5 10.0

Figure 3.5: Density estimate of observed
data compared with 200 simulated
datasets.
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In the plot above we have the kernel density estimate of the observed
data (y, thicker curve) and 200 simulated data sets (yrep, thin curves)
from the posterior predictive distribution. If the model fits the data
well, as it does, there will be little difference between the observed
dataset and the simulated datasets.

In figure 3.6, we use a rootogram1 to graph the expected counts 1 Christian Kleiber and Achim Zeileis,
“Visualizing Count Data Regressions
Using Rootograms,” The American
Statistician 70, no. 3 (July 2016): 296–
303.

(continuous line) versus the observed counts. The observed his-
togram matches the expected counts relatively well.
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Figure 3.6: Expected counts (continu-
ous line) versus observed counts.

3.4.3 Fit with real data

To fit the model to the data given to us, we first code a list to pass to
Stan using the variables in the noise_data dataframe: R code.

stan_dat_simple <- list(N = nrow(noise_data),

complaints = noise_data$complaints,

traps = noise_data$traps)

As we have compiled the model, we next sample from it. R code.
fit_P_real_data <- sampling(comp_model_P,

data = stan_dat_simple,

chains = 4, cores = 4)

Here are the parameters:
Inference for Stan model: 876057cb647dda742cb72f0ee9007ee2.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

alpha 2.59 0.01 0.16 2.28 2.48 2.59 2.69 2.89 823 1

beta -0.19 0.00 0.02 -0.24 -0.21 -0.19 -0.18 -0.14 756 1

Samples were drawn using NUTS(diag_e) at Mon Mar 2 11:34:21 2020.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

The coefficient β is estimated to be negative, implying that a higher
number of traps set in a building appears to be associated with fewer
complaints about noise in the following month. But we still need to
consider how well the model fits.
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3.4.4 Posterior predictive checking

The replicated datasets are not as dispersed as the observed data
(figure 3.7) and don’t seem to capture the observed rate of zeroes,

0 5 10 15 20 25

Figure 3.7: The replicated datasets are
not as dispersed as the observed data.

The Poisson model may not be a good fit for these data. Let’s explore
this further by considering, in figure 3.8, the proportion of zeroes in
the real data and predicted data.
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Figure 3.8: Compare the proportion of
zeroes in the real data and predictions.

Figure 3.8 shows the observed proportion of zeroes (thick vertical
line) and a histogram of the proportion of zeroes in each of the simu-
lated data sets. It is clear that the model does not capture this feature
of the data well at all. Let’s consider, in figure 3.9, the standardized
residuals of the observed vs predicted number of complaints.
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Figure 3.9: Comparing standardized
residuals of the observed vs predicted
number of complaints indicates more
positive residuals than negative.

It looks as though we have more positive residuals than negative,
which indicates that the model tends to underestimate the number of
complaints that will be received.
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We again graphically compare expected counts (continuous line)
with observed counts (histogram) in the rootogram, figure 3.10.
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Figure 3.10: Expected counts (contin-
uous line) versus the observed counts
(blue histogram).

If the model was fitting well these would be relatively similar, but
this figure shows that the number of complaints is underestimated
if there are few complaints, over-estimated for medium numbers of
complaints, and underestimated for large numbers of complaints.

We also view how the predicted number of complaints varies with
the number of traps. The model doesn’t seem to fully capture the
observed data.

0

5

10

15

3 6 9

Number of traps

N
um

be
r 

of
 c

om
pl

ai
nt

s Figure 3.11: Predicted number of
complaints varies with the number of
sound traps.

The model doesn’t estimate the tails of the observed data well.

3.5 Expanding the model: multiple predictors

Modeling the relationship between complaints and traps is
the simplest model. We can expand the model, however, in a few
ways that will be beneficial for our client. Moreover, the manager has
told us that they expect there are a number of other reasons that one
building might have more complaints of noise than another.

3.5.1 Interpretability

Currently, our model’s mean parameter is a rate of complaints per 30

days, but we’re modeling a process that occurs over an area as well as
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over time. We have the square footage of each building, so if we add
that information into the model, we can interpret our parameters as a
rate of complaints per square foot per 30 days.

complaintsb,t ∼ Poisson(sq_footb λb,t)

λb,t = exp (ηb,t)

ηb,t = α + β trapsb,t

The term sq_foot is called an exposure term. If we log the term, we
can put it in ηb,t:

complaintsb,t ∼ Poisson(λb,t)

λb,t = exp (ηb,t)

ηb,t = α + β trapsb,t + log_sq_footb

A quick check in figure 3.12 suggests a relationship between the
building square footage and the number of noise complaints.
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Figure 3.12: Compare the square
footage of the building with the number
of noise complaints.

Using the property manager’s intuition, we include two extra pieces
of information we know about the building — the (log of the) square
floor space and whether there is a live in super or not — into both
the simulated and real data. R code.

stan_dat_simple$log_sq_foot <- log(noise_data$total_sq_foot/1e4)

stan_dat_simple$live_in_super <- noise_data$live_in_super

3.5.2 Stan program for Poisson multiple regression

Now we code a new Stan model that uses multiple predictors. Stan code.
functions {

int poisson_log_safe_rng(real eta) {

real pois_rate = exp(eta);

if (pois_rate >= exp(20.79))

return -9;

return poisson_rng(pois_rate);

}

}

data {
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int<lower=1> N;

int<lower=0> complaints[N];

vector<lower=0>[N] traps;

vector<lower=0,upper=1>[N] live_in_super;

vector[N] log_sq_foot;

}

parameters {

real alpha;

real beta;

real beta_super;

}

model {

beta ~ normal(-0.25, 1);

beta_super ~ normal(-0.5, 1);

alpha ~ normal(log(4), 1);

complaints ~ poisson_log(alpha +

beta * traps +

beta_super * live_in_super +

log_sq_foot);

}

generated quantities {

int y_rep[N];

for (n in 1:N)

y_rep[n] = poisson_log_safe_rng(alpha +

beta * traps[n] +

beta_super * live_in_super[n] +

log_sq_foot[n]);

}

3.5.3 Simulate fake data with multiple predictors

As before, we check the model using simulated data. We use Stan to
simulate data, compiling the program into R object comp_dgp_multiple. Stan code.

data {

int<lower=1> N;

}

model {

}

generated quantities {

vector[N] log_sq_foot;

int live_in_super[N];

int traps[N];

int complaints[N];

real alpha = normal_rng(log(4), 0.1);

real beta = normal_rng(-0.25, 0.1);

real beta_super = normal_rng(-0.5, 0.1);

for (n in 1:N) {

log_sq_foot[n] = normal_rng(1.5, 0.1);

live_in_super[n] = bernoulli_rng(0.5);

traps[n] = poisson_rng(8);

complaints[n] = poisson_log_rng(alpha + log_sq_foot[n]

+ beta * traps[n] + beta_super * live_in_super[n]);

}

}

Next, we sample the compiled model to get simulated data. R code.
fitted_model_dgp <- sampling(comp_dgp_multiple,

data = list(N = nrow(noise_data)),
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chains = 1, cores = 1,

iter = 1, algorithm = ’Fixed_param’,

seed = 123)

sims_dgp <- rstan::extract(fitted_model_dgp)

We’ll push the simulated data as a list into Stan. R code.
stan_dat_fake <- list(N = nrow(noise_data),

log_sq_foot = sims_dgp$log_sq_foot[1, ],

live_in_super = sims_dgp$live_in_super[1, ],

traps = sims_dgp$traps[1, ],

complaints = sims_dgp$complaints[1, ])

We compile the model into R object comp_model_P_mult: Stan code.

functions {

int poisson_log_safe_rng(real eta) {

real pois_rate = exp(eta);

if (pois_rate >= exp(20.79))

return -9;

return poisson_rng(pois_rate);

}

}

data {

int<lower=1> N;

int<lower=0> complaints[N];

vector<lower=0>[N] traps;

vector<lower=0,upper=1>[N] live_in_super;

vector[N] log_sq_foot;

}

parameters {

real alpha;

real beta;

real beta_super;

}

model {

beta ~ normal(-0.25, 1);

beta_super ~ normal(-0.5, 1);

alpha ~ normal(log(4), 1);

complaints ~ poisson_log(alpha +

beta * traps +

beta_super * live_in_super +

log_sq_foot);

}

generated quantities {

int y_rep[N];

for (n in 1:N)

y_rep[n] = poisson_log_safe_rng(alpha +

beta * traps[n] +

beta_super * live_in_super[n] +

log_sq_foot[n]);

}

And we sample from the model: R code.
fit_model_P_mult <- sampling(comp_model_P_mult,

data = stan_dat_fake,

chains = 4, cores = 4)

Then compare these parameters to the true parameters:
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Figure 3.13: Compare model parame-
ters to the true parameters.

Now that we’ve recovered the parameters from the simulated data,
we’re ready to fit the measured data that were given to us.

3.5.4 Fit the measured (observed) data

We explore the fit by comparing the data to posterior predictive sim-
ulations: R code.

fit_model_P_mult_real <- sampling(comp_model_P_mult,

data = stan_dat_simple,

chains = 4, cores = 4)

y_rep <- as.matrix(fit_model_P_mult_real,

pars = "y_rep")

As we see in figure 3.14, This again looks like we haven’t estimated
the observed smaller counts well, nor have we estimated the ob-
served larger counts.
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Figure 3.14: Density overlay.

We’re still underestimating the proportion of zeroes in the observed
data (figure 3.15). Ideally this vertical line would fall somewhere
within the histogram. We also, in figure 3.16, graph uncertainty inter-
vals for the predicted complaints for different numbers of traps.

We’ve increased the tails a bit more at the larger numbers of traps,
but we still have some large observed numbers of complaints that the
model would consider extremely unlikely events.
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Figure 3.15: Compare proportion of
zeros estimated to the data.
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3.6 Modeling count data with the negative binomial distribution

When we considered modelling the data using a Poisson, we saw
that the model didn’t appear to fit as well to the data as we would
like. In particular the model under-predicted low and high numbers
of complaints, and over-predicted the medium number of complaints.
This is one indication of overdispersion, where the variance is larger
than the mean. A Poisson model doesn’t fit overdispersed count data
well because the same parameter λ, controls both the expected counts
and the variance of these counts. The natural alternative to this is the
negative binomial model:

complaintsb,t ∼ Neg-Binomial(λb,t, φ)

λb,t = exp (ηb,t)

ηb,t = α + β trapsb,t + βsuper superb + log_sq_footb

In Stan the negative binomial mass function we’ll use is called
neg_binomial_2_log(ints y, reals η, reals φ) in Stan. Like the poisson_log

function, this negative binomial mass function that is parameterized
in terms of its log-mean, η, but it also has a precision φ such that

E[y] = λ = exp(η)

Var[y] = λ + λ2/φ = exp(η) + exp(η)2/φ.
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As φ gets larger the term λ2/φ approaches zero and so the variance
of the negative-binomial approaches λ; that is, the negative-binomial
gets closer and closer to the Poisson.

3.6.1 Stan program for negative-binomial regression

Let’s code a model using the negative-binomial, compiled into R
object comp_dgp_multiple_NB. Stan code.

data {

int<lower=1> N;

}

model {

}

generated quantities {

vector[N] log_sq_foot;

int live_in_super[N];

int traps[N];

int complaints[N];

real alpha = normal_rng(log(4), 0.1);

real beta = normal_rng(-0.25, 0.1);

real beta_super = normal_rng(-0.5, 0.1);

real inv_phi = fabs(normal_rng(0, 1));

for (n in 1:N) {

log_sq_foot[n] = normal_rng(1.5, 0.1);

live_in_super[n] = bernoulli_rng(0.5);

traps[n] = poisson_rng(8);

complaints[n] = neg_binomial_2_log_rng(alpha + log_sq_foot[n]

+ beta * traps[n] + beta_super * live_in_super[n], inv(inv_phi));

}

}

3.6.2 Fake data fit: Multiple negative-binomial regression

Next, we generate one draw from the fake data model so we can
use the data to fit our model and compare the known values of the
parameters to the posterior density of the parameters. R code.

fitted_model_dgp_NB <- sampling(comp_dgp_multiple_NB,

data = list(N = nrow(noise_data)),

chains = 1, cores = 1, iter = 1,

algorithm = ’Fixed_param’, seed = 123)

sims_dgp_NB <- rstan::extract(fitted_model_dgp_NB)

Here’s our dataset to feed into this Stan model. R code.
stan_dat_fake_NB <- list(N = nrow(noise_data),

log_sq_foot = sims_dgp_NB$log_sq_foot[1, ],

live_in_super = sims_dgp_NB$live_in_super[1, ],

traps = sims_dgp_NB$traps[1, ],

complaints = sims_dgp_NB$complaints[1, ]

)

After compiling the inferential model into R object comp_model_NB, Stan code.

functions {
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int neg_binomial_2_log_safe_rng(real eta, real phi) {

real gamma_rate = gamma_rng(phi, phi / exp(eta));

if (gamma_rate >= exp(20.79))

return -9;

return poisson_rng(gamma_rate);

}

}

data {

int<lower=1> N;

vector<lower=0>[N] traps;

vector<lower=0,upper=1>[N] live_in_super;

vector[N] log_sq_foot;

int<lower=0> complaints[N];

}

parameters {

real alpha;

real beta;

real beta_super;

real<lower=0> inv_phi;

}

transformed parameters {

real phi = inv(inv_phi);

}

model {

alpha ~ normal(log(4), 1);

beta ~ normal(-0.25, 1);

beta_super ~ normal(-0.5, 1);

inv_phi ~ normal(0, 1);

complaints ~ neg_binomial_2_log(alpha +

beta * traps +

beta_super * live_in_super +

log_sq_foot, phi);

}

generated quantities {

int y_rep[N];

for (n in 1:N)

y_rep[n] = neg_binomial_2_log_safe_rng(alpha + beta * traps[n] +

beta_super * live_in_super[n] + log_sq_foot[n], phi);

}

we run our NB regression with the fake data and extract samples
to examine posterior predictive checks and check whether we’ve
sufficiently recovered our known parameters, alpha beta, R code.

fitted_model_NB <- sampling(comp_model_NB,

data = stan_dat_fake_NB,

chains = 4, cores = 4)

posterior_alpha_beta_NB <-

as.matrix(fitted_model_NB,

pars = c(’alpha’, ’beta’, ’beta_super’, ’inv_phi’))

We construct the vector of true values from the simulated dataset
and compare with the recovered parameters in figure 3.17. R code.

true_alpha_beta_NB <- c(sims_dgp_NB$alpha,

sims_dgp_NB$beta,

sims_dgp_NB$beta_super,

sims_dgp_NB$inv_phi)
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Figure 3.17: Compare simulated dataset
with recovered parameters.

3.6.3 Fit to measured data and check our fit
R code.

fitted_model_NB <- sampling(comp_model_NB,

data = stan_dat_simple,

chains = 4, cores = 4)

sims_NB <- rstan::extract(fitted_model_NB)

Let’s compare our predictions with the observed data in figure 3.18.

0 25 50 75

Figure 3.18: Compare predictions with
observations.

It appears that our model now estimates both the number of small
counts better as well as the tails. Let’s check if the negative binomial
model does a better job estimating the observed number of zeroes in
figure 3.19.

0.1 0.2 0.3

Figure 3.19: Negative binomial model
comparison with data.

These look OK, but let’s look at the standardized residual plot.
The standardized residuals look fair in figure 3.20, but we still

have some large standardized residuals. This might be because we are
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currently ignoring that the data are clustered by buildings, and that
the probability of noise issue may vary substantially across buildings.
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Figure 3.20: Standardized residual plot.

In the rootogram in figure 3.21, the estimates seem more plausible.
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Figure 3.21: The expected number
of complaints matches closer to the
observed number of complaints.

We can tell this because now the expected number of complaints
matches much closer to the observed number of complaints for a
given number of sound traps, see figure 3.22. However, we still have
some larger counts that appear to be outliers for the model.
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s Figure 3.22: Compare predictions with
number of sound traps.

We haven’t considered that the observed data are clustered by build-
ing yet. Let’s check posterior predictions to see whether we should
include building information into the model.

Figure 3.23 suggests that we’re getting plausible predictions for most
building means, but some are estimated better than others and some
have larger uncertainties than we might expect. If we explicitly model
the variation across buildings we may be able to get better estimates.



p( persuasion | data, analysis, storytelling ) 43

93 98

45 47 62 70

5 13 26 37

2.5 5.0 7.5 10.0 5 10 15 20

2.5 5.0 7.5 10.0 5 10 15 0 1 2 3 0 2 4 6

5 10 2 4 6 2.5 5.0 7.5 10.0 0 2 4

Figure 3.23: Compare posterior means
to observations.

3.7 Hierarchical modeling

3.7.1 Modeling varying intercepts for each building

Let’s add a hierarchical intercept parameter, αb at the building level
to our model.

complaintsb,t ∼ Neg-Binomial(λb,t, φ)

λb,t = exp (ηb,t)

ηb,t = µb + β trapsb,t + βsuper superb + log_sq_footb

µb ∼ normal(α, σµ)

In our Stan model, µb is the b-th element of the vector mu which has
one element per building.

One of our predictors varies only by building, so we can rewrite
the above model more efficiently like so:

ηb,t = µb + β trapsb,t + log_sq_footb

µb ∼ normal(α + βsuper superb, σµ)

We have more information at the building level as well, like the av-
erage age of the residents, the average age of the buildings, and the
average per-apartment monthly rent so we can add that data into a
matrix called building_data, which will have one row per building
and four columns:

live_in_super
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age_of_building

average_tentant_age

monthly_average_rent

We’ll write the Stan model like:

ηb,t = αb + β traps + log_sq_foot

µ ∼ normal(α + building_data ζ, σµ)

3.7.2 Prepare building data for hierarchical model

We’ll need to do some more data prep before we can fit our models.
Firstly, to use the building variable in Stan, we transform it from a
factor variable to an integer variable. R code.

N_months <- length(unique(noise_data$date))

## Add some IDs for building and month

noise_data <- noise_data %>%

mutate(

building_fac = factor(building_id, levels = unique(building_id)),

building_idx = as.integer(building_fac),

ids = rep(1:N_months, N_buildings),

mo_idx = lubridate::month(date)

)

## Center and rescale the building specific data

building_data <- noise_data %>%

select(building_idx, live_in_super, age_of_building,

total_sq_foot, average_tenant_age, monthly_average_rent) %>%

unique() %>%

arrange(building_idx) %>%

select(-building_idx) %>%

scale(scale=FALSE) %>%

as.data.frame() %>%

mutate( ## scale by constants

age_of_building = age_of_building / 10,

total_sq_foot = total_sq_foot / 10000,

average_tenant_age = average_tenant_age / 10,

monthly_average_rent = monthly_average_rent / 1000

) %>%

as.matrix()

## Make data list for Stan

stan_dat_hier <- with(noise_data,

list(complaints = complaints,

traps = traps,

N = length(traps),

J = N_buildings,

M = N_months,

log_sq_foot = log(noise_data$total_sq_foot/1e4),

building_data = building_data[,-3],

mo_idx = as.integer(as.factor(date)),

K = 4, building_idx = building_idx))
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3.7.3 Compile and fit the hierarchical model

Let’s compile the model into R object comp_model_NB_hier. Stan code.

functions {

int neg_binomial_2_log_safe_rng(real eta, real phi) {

real gamma_rate = gamma_rng(phi, phi / exp(eta));

if (gamma_rate >= exp(20.79))

return -9;

return poisson_rng(gamma_rate);

}

}

data {

int<lower=1> N;

int<lower=0> complaints[N];

vector<lower=0>[N] traps;

// ’exposure’

vector[N] log_sq_foot;

// building-level data

int<lower=1> K;

int<lower=1> J;

int<lower=1, upper=J> building_idx[N];

matrix[J,K] building_data;

}

parameters {

real<lower=0> inv_phi;

real beta;

vector[J] mu;

real<lower=0> sigma_mu;

real alpha;

vector[K] zeta;

}

transformed parameters {

real phi = inv(inv_phi);

}

model {

mu ~ normal(alpha + building_data * zeta, sigma_mu);

sigma_mu ~ normal(0, 1);

alpha ~ normal(log(4), 1);

zeta ~ normal(0, 1);

beta ~ normal(-0.25, 1);

inv_phi ~ normal(0, 1);

complaints ~ neg_binomial_2_log(mu[building_idx] +

beta * traps + log_sq_foot, phi);

}

generated quantities {

int y_rep[N];

for (n in 1:N) {

real eta_n = mu[building_idx[n]] +

beta * traps[n] + log_sq_foot[n];

y_rep[n] = neg_binomial_2_log_safe_rng(eta_n, phi);

}

}

And fit the model to data. R code.

fitted_model_NB_hier <- sampling(comp_model_NB_hier,

data = stan_dat_hier,

chains = 4, cores = 4,

iter = 4000)
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3.7.4 Diagnostics

We get warnings from Stan about divergent transitions,

Divergences:

490 of 8000 iterations ended with a divergence (6.125%).

Try increasing ’adapt_delta’ to remove the divergences.

Tree depth:

0 of 8000 iterations saturated the maximum tree depth of 10.

Energy:

E-BFMI indicated no pathological behavior.

which indicates that there may be regions of the posterior that have
not been explored by the Markov chains.

In this analysis, we see that we have divergent transitions because
we need to reparameterize our model. We retain the overall struc-
ture of the model but transform some of the parameters so that it is
easier for Stan to sample from the parameter space. Before we repa-
rameterizing, we first consider how reparameterizing may resolve the
issue. We examine: the fitted parameter values, including the effec-
tive sample size, and traceplots and scatterplots that reveal particular
patterns in locations of the divergences. First let’s extract the fits from
the model. R code.

sims_hier_NB <- rstan::extract(fitted_model_NB_hier)

Here are the parameter estimates that are of most interest.
Inference for Stan model: 2c1ee83c97acb05da1f2461f9097ddd4.

4 chains, each with iter=4000; warmup=2000; thin=1;

post-warmup draws per chain=2000, total post-warmup draws=8000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

sigma_mu 0.25 0.01 0.17 0.06 0.13 0.21 0.33 0.68 672 1

beta -0.23 0.00 0.06 -0.35 -0.27 -0.23 -0.19 -0.11 709 1

alpha 1.26 0.02 0.43 0.39 0.98 1.27 1.55 2.13 725 1

phi 1.58 0.01 0.35 1.03 1.33 1.54 1.79 2.39 1108 1

mu[1] 1.28 0.02 0.55 0.16 0.92 1.29 1.63 2.37 802 1

mu[2] 1.23 0.02 0.53 0.17 0.89 1.23 1.57 2.28 859 1

mu[3] 1.41 0.02 0.49 0.43 1.10 1.42 1.73 2.37 841 1

mu[4] 1.45 0.02 0.48 0.51 1.12 1.44 1.76 2.44 851 1

mu[5] 1.08 0.01 0.42 0.24 0.81 1.10 1.35 1.93 946 1

mu[6] 1.17 0.02 0.48 0.19 0.85 1.19 1.49 2.13 748 1

mu[7] 1.47 0.02 0.52 0.45 1.13 1.47 1.81 2.48 829 1

mu[8] 1.26 0.01 0.42 0.41 0.98 1.27 1.54 2.09 869 1

mu[9] 1.42 0.02 0.57 0.29 1.04 1.44 1.80 2.53 669 1

mu[10] 0.86 0.01 0.37 0.16 0.62 0.86 1.09 1.61 1008 1

Samples were drawn using NUTS(diag_e) at Sat Mar 7 22:34:04 2020.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).
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The effective samples seem a little low for many of the parameters
relative to the total number of samples. This alone doesn’t indicate
the need to reparameterize, but it does indicate that we should look
further at the trace plots and pairs plots. First let’s look at the trace-
plots (figure 3.24) to see if the divergent transitions form a pattern.
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Figure 3.24: Traceplots show diver-
gences bunching in patterns.

Looks as if the divergent parameters, the rug plot of red bars under-
neath the traceplots corresponds to samples where the sampler gets
stuck at one parameter value for σµ.
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Figure 3.25: Scatter of MCMC draws
from parameters.

In figure 3.25, we find cloud-like shape shows most of the diver-
gences clustering towards the bottom. We’ll see a bit later that we
actually want this to look more like a funnel than a cloud, but the di-
vergences are indicating that the sampler can’t explore the narrowing
neck of the funnel.

One way to see why we should expect some version of a funnel is
to look at some simulations from the prior, which we can do without
MCMC and thus with no risk of sampling problems: R code.

N_sims <- 1000

log_sigma <- rep(NA, N_sims)

theta <- rep(NA, N_sims)

for (j in 1:N_sims) {

log_sigma[j] <- rnorm(1, mean = 0, sd = 1)

theta[j] <- rnorm(1, mean = 0, sd = exp(log_sigma[j]))

}

draws <- cbind("mu" = theta, "log(sigma_mu)" = log_sigma)
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Figure 3.26: Scatter of MCMC draws
from the prior form a funnel.

If the data are at all informative we shouldn’t expect the posterior to
look exactly like the prior. But unless the data are highly informative
about the parameters and the posterior concentrates away from the
narrow neck of the funnel, the sampler will have to confront the
funnel geometry. (See the Visual MCMC Diagnostics.)

We consider another view of the divergences using a parallel coor-
dinates plot:
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Figure 3.27: Parallel coordinate plot
shows divergences concentrating when
sigma_mu is small.

In figure 3.27, too, we see evidence that our problems concentrate
when sigma_mu is small.

3.7.5 Reparameterize and recheck diagnostics

Instead, we should use the non-centered parameterization for µb. We
define a vector of auxiliary variables in the parameters block, mu_raw
that is given a normal(0,1) prior in the model block. We then make
mu a transformed parameter: We can reparameterize the random
intercept µb, which is distributed:

µb ∼ normal(α + building_data, ζ, σµ)

In Stan code, Stan code.
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transformed parameters {

vector[J] mu;

mu = alpha + building_data * zeta + sigma_mu * mu_raw;

}

This gives mu a normal(α + building_data, ζ, σµ) distribution, but it
decouples the dependence of the density of each element of mu from
sigma_mu (σµ). hier_NB_regression_ncp.stan uses the non-centered
parameterization for mu. We will examine the effective sample size
of the fitted model to see whether we’ve fixed the problem with our
reparameterization.

Compile the model into R object comp_model_NB_hier_ncp. Stan code.

functions {

int neg_binomial_2_log_safe_rng(real eta, real phi) {

real gamma_rate = gamma_rng(phi, phi / exp(eta));

if (gamma_rate >= exp(20.79))

return -9;

return poisson_rng(gamma_rate);

}

}

data {

int<lower=1> N;

int<lower=0> complaints[N];

vector<lower=0>[N] traps;

vector[N] log_sq_foot;

int<lower=1> K;

int<lower=1> J;

int<lower=1, upper=J> building_idx[N];

matrix[J,K] building_data;

}

parameters {

real<lower=0> inv_phi;

real beta;

vector[J] mu_raw;

real<lower=0> sigma_mu;

real alpha;

vector[K] zeta;

}

transformed parameters {

real phi = inv(inv_phi);

vector[J] mu = alpha +

building_data * zeta +

sigma_mu * mu_raw;

}

model {

mu_raw ~ normal(0, 1);

sigma_mu ~ normal(0, 1);

alpha ~ normal(log(4), 1);

zeta ~ normal(0, 1);

beta ~ normal(-0.25, 1);

inv_phi ~ normal(0, 1);

complaints ~ neg_binomial_2_log(mu[building_idx] +

beta * traps +

log_sq_foot, phi);

}

generated quantities {
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int y_rep[N];

for (n in 1:N) {

real eta_n = mu[building_idx[n]] +

beta * traps[n] +

log_sq_foot[n];

y_rep[n] = neg_binomial_2_log_safe_rng(eta_n, phi);

}

}

Fit the model to the data. R code.
fitted_model_NB_hier_ncp <- sampling(comp_model_NB_hier_ncp,

data = stan_dat_hier,

chains = 4, cores = 4,

control = list(adapt_delta = 0.95))

Our parameter estimates and effective sample sizes for the new
model follows,

Inference for Stan model: 041aec96a5df841e1548e3c3343d99dd.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

sigma_mu 0.24 0.01 0.18 0.01 0.10 0.20 0.34 0.69 1266 1

beta -0.23 0.00 0.06 -0.35 -0.27 -0.23 -0.19 -0.11 2381 1

alpha 1.25 0.01 0.43 0.41 0.97 1.25 1.54 2.10 2344 1

phi 1.60 0.01 0.36 1.03 1.34 1.55 1.80 2.45 4265 1

mu[1] 1.27 0.01 0.55 0.21 0.91 1.26 1.63 2.37 2283 1

mu[2] 1.22 0.01 0.53 0.18 0.87 1.20 1.57 2.27 2435 1

mu[3] 1.39 0.01 0.50 0.44 1.05 1.39 1.72 2.38 2888 1

mu[4] 1.43 0.01 0.48 0.47 1.10 1.43 1.75 2.41 2485 1

mu[5] 1.07 0.01 0.42 0.27 0.79 1.07 1.35 1.90 2936 1

mu[6] 1.17 0.01 0.49 0.18 0.85 1.16 1.50 2.13 2627 1

mu[7] 1.44 0.01 0.51 0.44 1.10 1.44 1.77 2.47 2951 1

mu[8] 1.24 0.01 0.43 0.41 0.96 1.24 1.52 2.09 2773 1

mu[9] 1.41 0.01 0.56 0.30 1.03 1.41 1.78 2.47 2657 1

mu[10] 0.86 0.01 0.37 0.14 0.61 0.85 1.10 1.62 3070 1

Samples were drawn using NUTS(diag_e) at Sat Mar 7 22:34:15 2020.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

The model has improved its effective sample sizes for mu. We extract
the parameters for running our posterior predictive checks.

Compare, in figures 3.28 and 3.29, our earlier mcmc information (left,
top) showing divergences with our new model (right, bottom).

We review the marginal plot with our estimates against observed
values, again, in figure 3.30.

Our new model looks good. If we’ve estimated the building-level
means well, then the posterior distribution of means by building
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Figure 3.28: The new model (right)
improves effective samples sizes over
the prior model (left).
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Figure 3.29: Compare both models: the
new model has no divergences.
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Figure 3.30: Posterior predictions have
improved.
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should match well with the observed means of the quantity of build-
ing complaints by month.
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Figure 3.31: Posterior checks by build-
ing also have improved.

We weren’t terribly off with estimates of the building-specific means
before, but now figure 3.31 suggests we have well captured the ob-
served means with our model. The model is also able to do a decent
job estimating within-building variability, as shown in figure 3.32.
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Figure 3.32: The model estimates
within-building variability.

Again, we compare predictions to observed complaints by number
of traps (figure 3.33):

The standardized residuals, figure 3.34, have also shrunk (improved).
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Figure 3.34: Standardized residuals
have improved.

Finally, we compare the expected and measured values through a
rootogram in figure 3.35.
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Figure 3.35: Compare expected and
measured values.

3.7.6 Varying intercepts and varying slopes

We have some new data that extends the number of time points of
observations for each building. This lets us explore how to expand
the model a bit more with varying slopes in addition to the varying
intercepts and also, later, also model temporal variation.

Perhaps if the levels of complaints differ by building, so does the
coefficient for the effect of traps. We can add these varying coeffi-
cients to our model and observe the fit.

complaintsb,t ∼ Neg-Binomial(λb,t, φ)

λb,t = exp (ηb,t)

ηb,t = µb + κb trapsb,t + log_sq_footb

µb ∼ normal(α + building_data ζ, σµ)

κb ∼ normal(β + building_dataγ, σκ)
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Let’s compile the model. R code.
comp_model_NB_hier_slopes <-

stan_model(’stan_programs/hier_NB_regression_ncp_slopes_mod.stan’)

Fit the model to data and extract the posterior draws needed for our
posterior predictive checks. R code.

fitted_model_NB_hier_slopes <-

sampling(comp_model_NB_hier_slopes,

data = stan_dat_hier,

chains = 4, cores = 4,

control = list(adapt_delta = 0.95))

To see if the model infers inter-building differences, we can plot a
histogram of our marginal posterior distribution for sigma_kappa.

0.0 0.2 0.4 0.6 0.8

sigma_kappa

Figure 3.36: Marginal posterior distribu-
tion for sigma_kappa.

Inference for Stan model: hier_NB_regression_ncp_slopes_mod.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

kappa[1] -0.01 0.00 0.08 -0.14 -0.07 -0.03 0.03 0.17 770 1.01

kappa[2] -0.42 0.00 0.10 -0.64 -0.48 -0.42 -0.35 -0.25 1661 1.00

kappa[3] -0.59 0.00 0.11 -0.81 -0.66 -0.59 -0.51 -0.39 5266 1.00

kappa[4] -0.22 0.00 0.07 -0.36 -0.27 -0.22 -0.18 -0.09 3892 1.00

kappa[5] -0.60 0.00 0.09 -0.78 -0.66 -0.60 -0.54 -0.42 5201 1.00

kappa[6] -0.44 0.00 0.10 -0.67 -0.50 -0.43 -0.37 -0.25 2823 1.00

kappa[7] -0.31 0.00 0.07 -0.44 -0.36 -0.31 -0.26 -0.18 5364 1.00

kappa[8] -0.23 0.00 0.15 -0.56 -0.32 -0.22 -0.13 0.04 2269 1.00

kappa[9] 0.08 0.00 0.06 -0.03 0.04 0.08 0.12 0.20 5536 1.00

kappa[10] -0.72 0.00 0.16 -1.00 -0.82 -0.73 -0.62 -0.38 1140 1.00

beta -0.35 0.00 0.07 -0.48 -0.38 -0.35 -0.31 -0.22 2193 1.00

alpha 1.41 0.01 0.32 0.73 1.22 1.42 1.61 2.00 2139 1.00

phi 1.61 0.00 0.19 1.27 1.48 1.60 1.73 2.02 4198 1.00

sigma_mu 0.52 0.02 0.44 0.02 0.18 0.41 0.74 1.62 493 1.01

sigma_kappa 0.13 0.00 0.09 0.03 0.07 0.11 0.16 0.37 476 1.01

mu[1] 0.26 0.03 0.76 -1.54 -0.15 0.37 0.78 1.47 724 1.01

mu[2] 1.67 0.01 0.53 0.72 1.30 1.63 1.99 2.82 1567 1.00

mu[3] 2.13 0.00 0.33 1.52 1.91 2.13 2.35 2.81 4959 1.00

mu[4] 1.50 0.01 0.51 0.50 1.18 1.50 1.80 2.56 3883 1.00

mu[5] 2.39 0.01 0.42 1.60 2.11 2.38 2.67 3.22 5774 1.00

mu[6] 1.91 0.01 0.38 1.21 1.67 1.88 2.13 2.79 2666 1.00

mu[7] 2.68 0.00 0.26 2.19 2.50 2.66 2.85 3.20 4816 1.00

mu[8] -0.51 0.02 0.96 -2.25 -1.15 -0.58 0.06 1.54 2538 1.00

mu[9] 0.21 0.01 0.57 -0.92 -0.16 0.21 0.59 1.31 5593 1.00

mu[10] 1.79 0.04 1.13 -0.85 1.20 1.96 2.56 3.52 837 1.01

Samples were drawn using NUTS(diag_e) at Sat Mar 7 22:34:54 2020.
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For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).
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Figure 3.37: Marginal posterior distribu-
tion for beta.

While the model can’t specifically rule out zero from the posterior, it
does have mass at small non-zero numbers, so we should leave in the
hierarchy over kappa. Plotting the marginal data density again, the
model still looks well calibrated.

0 200 400 600

Figure 3.38: Marginal density estimates
compared with observations.

3.8 Time varying effects and structured priors

We haven’t looked at how complaints change over time. Let’s
look at whether there’s any pattern in our estimates to observed
values for each month (over time). We show that in figure 3.39.

We might augment our model with a log-additive monthly effect, mot.

ηb,t = µb + κb trapsb,t + mot + log_sq_footb

We have complete freedom over how to specify the prior for mot.
There are several competing factors for how the number of com-
plaints might change over time. It makes sense that there might be
more noise in the environment during the summer, but we might
also expect that there is more noise control in the summer as well.
Given that we’re modeling complaints, maybe after the first sighting
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Figure 3.39: Estimates grouped by
building.

of noise in a building, residents are more vigilant, and thus com-
plaints of noise would increase. This can be a motivation for using an
autoregressive prior for our monthly effects. The model is as follows:

mot ∼ normal(ρ mot−1, σmo)

≡
mot = ρ mot−1 + εt, εt ∼ normal(0, σmo)

ρ ∈ [−1, 1]

This equation says that the monthly effect in month t is directly re-
lated to the last month’s monthly effect. Given the description of the
process above, it seems like there could be either positive or nega-
tive associations between the months, but there should be a bit more
weight placed on positive ρs, so we’ll put an informative prior that
pushes the parameter ρ towards 0.5.

Before we write our prior, however, we have a problem: Stan
doesn’t implement any densities that have support on [−1, 1]. We
can use variable transformation of a raw variable defined on [0, 1] to
give us a density on [−1, 1]. Specifically,

ρraw ∈ [0, 1]

ρ = 2 · ρraw − 1

Then we put a beta prior on ρraw to push our estimate near 0.5.
One further wrinkle is that we have a prior for mot that depends

on mot−1. That is, we are working with the conditional distribution of
mot given mot−1. But what should we do about the prior for mo1, for
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which we don’t have a previous time period in the data?
We need to work out the marginal distribution of the first obser-

vation. Thankfully we consider that AR models are stationary, so
Var(mot) = Var(mot−1) and E(mot) = E(mot−1) for all t. Therefore the
marginal distribution of mo1 is the same as the marginal distribution
of any mot.

First we derive the marginal variance of mot.

Var(mot) = Var(ρmot−1 + εt)

Var(mot) = Var(ρmot−1) + Var(εt)

where the second line holds by independence of εt and εt−1). Then,
using the fact that Var(cX) = c2Var(X) for a constant c and the fact
that, by stationarity, Var(mot−1) = Var(mot), we then obtain:

Var(mot) = ρ2Var(mot) + σ2
mo

Var(mot) =
σ2
mo

1− ρ2

For the mean of mot things are a bit simpler:

E(mot) = E(ρ mot−1 + εt)

E(mot) = E(ρ mot−1) + E(εt)

Since E(εt) = 0 by assumption we have

E(mot) = E(ρ mot−1) + 0

E(mot) = ρ E(mot)

E(mot)− ρE(mot) = 0

E(mot) = 0/(1− ρ)

which for ρ 6= 1 yields E(mot) = 0.
We now have the marginal distribution for mot, which, in our case,

we will use for mo1. The full AR(1) specification is then:

mo1 ∼ normal

(
0,

σmo√
1− ρ2

)
mot ∼ normal (ρ mot−1, σmo) ∀t > 1

We compile the model: R code.
comp_model_NB_hier_mos <-

stan_model(’stan_programs/hier_NB_regression_ncp_slopes_mod_mos.stan’)
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fitted_model_NB_hier_mos <-

sampling(comp_model_NB_hier_mos,

data = stan_dat_hier,

chains = 4, cores = 4,

control = list(adapt_delta = 0.9))

Given time constraints, we won’t go on expanding the model for
now. Questions remain: what other information would help us un-
derstand the data generating process better? What other aspects of
the data generating process might we still want to capture? As usual,
we run through our posterior predictive checks, comparing the den-
sity of our estimates to observed values.

0 50 100 150 200

Figure 3.40: Posterior predictive checks.
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Figure 3.41: Posterior predictive checks.

Our monthly random intercept has better estimate a monthly pattern
across all the buildings (figure 3.41). We can also compare the prior
and posterior for the autoregressive parameter to see how much
we’ve learned. Figures 3.42 and 3.43 shows two different ways of
comparing the prior and posterior visually.

Our paramter estimates include,
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Figure 3.42: Compare draws from prior
and draws from posterior.
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Figure 3.43: Overlay prior density curve
on posterior draws

Inference for Stan model: hier_NB_regression_ncp_slopes_mod_mos.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

rho 0.78 0.00 0.08 0.60 0.73 0.78 0.83 0.91 1545 1

sigma_mu 0.32 0.01 0.24 0.02 0.13 0.27 0.45 0.90 1314 1

sigma_kappa 0.09 0.00 0.06 0.01 0.05 0.08 0.11 0.24 979 1

gamma[1] -0.18 0.00 0.10 -0.38 -0.25 -0.18 -0.12 0.03 2250 1

gamma[2] 0.12 0.00 0.08 -0.03 0.07 0.11 0.16 0.28 1668 1

gamma[3] 0.11 0.00 0.15 -0.20 0.02 0.11 0.20 0.42 1704 1

gamma[4] -0.01 0.00 0.07 -0.15 -0.04 0.00 0.03 0.12 1182 1

Samples were drawn using NUTS(diag_e) at Sat Mar 7 22:35:37 2020.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).
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It looks as if, per figure 3.44, our model finally estimates a reasonable
posterior predictive distribution compared with observed values for
all given numbers of sound traps, and appropriately captures the
tails of the data generating process.
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3.9 Using our model for decisions: Cost forecasts

Our model seems to be fitting well, so now we use the model to
help us make decisions about how many traps to put in our build-
ings. We’ll make a forecast for 6 months forward. First we code the
model and compile it into R object comp_rev. Stan code.

functions {

int neg_binomial_2_log_safe_rng(real eta, real phi) {

real gamma_rate = gamma_rng(phi, phi / exp(eta));

if (gamma_rate >= exp(20.79))

return -9;

return poisson_rng(gamma_rate);

}

}

data {

int<lower=1> N;

int<lower=0> complaints[N];

vector<lower=0>[N] traps;

vector[N] log_sq_foot;

int<lower=1> K;

int<lower=1> J;

int<lower=1, upper=J> building_idx[N];

matrix[J,K] building_data;

int<lower=1> M;

int<lower=1,upper=M> mo_idx[N];

int<lower=1> M_forward;

vector[J] log_sq_foot_pred;

}

transformed data {

int N_hypo_traps = 21;

int hypo_traps[N_hypo_traps];

for (i in 1:N_hypo_traps)

hypo_traps[i] = i - 1;

}

parameters {

real<lower=0> inv_phi;

vector[J] mu_raw;

real<lower=0> sigma_mu;

real alpha;

vector[K] zeta;

vector[J] kappa_raw;

real<lower=0> sigma_kappa;

real beta;

vector[K] gamma;

vector[M] mo_raw;

real<lower=0> sigma_mo;

real<lower=0,upper=1> rho_raw;

}

transformed parameters {

real phi = inv(inv_phi);

vector[J] mu = alpha +

building_data * zeta +
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sigma_mu * mu_raw;

vector[J] kappa = beta +

building_data * gamma +

sigma_kappa * kappa_raw;

real rho = 2 * rho_raw - 1;

vector[M] mo = sigma_mo * mo_raw;

mo[1] /= sqrt(1 - rho^2);

for (m in 2:M) {

mo[m] += rho * mo[m-1];

}

}

model {

inv_phi ~ normal(0, 1);

kappa_raw ~ normal(0,1) ;

sigma_kappa ~ normal(0, 1);

beta ~ normal(-0.25, 1);

gamma ~ normal(0, 1);

mu_raw ~ normal(0,1) ;

sigma_mu ~ normal(0, 1);

alpha ~ normal(log(4), 1);

zeta ~ normal(0, 1);

mo_raw ~ normal(0,1);

sigma_mo ~ normal(0, 1);

rho_raw ~ beta(10, 5);

{

vector[N] eta = mu[building_idx] +

kappa[building_idx] .* traps +

mo[mo_idx] +

log_sq_foot;

complaints ~ neg_binomial_2_log(eta, phi);

}

}

generated quantities {

int y_pred[J,N_hypo_traps];

matrix[J,N_hypo_traps] rev_pred;

for (j in 1:J) {

for (i in 1:N_hypo_traps) {

int y_pred_by_month[M_forward];

vector[M_forward] mo_forward;

mo_forward[1] = normal_rng(rho * mo[M], sigma_mo);

for (m in 2:M_forward)

mo_forward[m] = normal_rng(rho * mo_forward[m-1], sigma_mo);

for (m in 1:M_forward) {

real eta = mu[j] +

kappa[j] * hypo_traps[i] +

mo_forward[m] +

log_sq_foot_pred[j];

y_pred_by_month[m] = neg_binomial_2_log_safe_rng(eta, phi);

}

y_pred[j,i] = sum(y_pred_by_month);

rev_pred[j,i] = -10 * y_pred[j,i];

}
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}

}

An important input to the revenue model is how much revenue is
lost due to each complaint. The client has a policy that for every 10

complaints, they’ll call an exterminator costing the client $100, so
that’ll amount to $10 per complaint. R code.

rev_model <-

sampling(comp_rev,

data = stan_dat_hier,

cores = 4, chains = 4,

control = list(adapt_delta = 0.9))

Below we’ve generated revenue curves for the buildings. These charts
give us precise quantification of our uncertainty around our revenue
projections at any number of traps for each building.

A key input to our analysis will be the cost of installing traps.
We’re simulating the number of complaints we receive over the
course of a year, so we need to understand the cost associated with
maintaining each trap over the course of a year. There’s the cost at-
tributed to the raw trap and related material. The cost of maintaining
one trap for a year plus monthly replenishment of the material is
about $20. R code.

N_traps <- 20

costs <- 10 * (0:N_traps)

We’ll also need labor for maintaining the traps, which need to be
serviced every two months. If there are fewer than five traps, our in-
house maintenance staff can manage the stations (about one hour of
work every two months at $20/hour), but above five traps we need
to hire outside noise control to help out. They’re a bit more expen-
sive, so we’ve put their cost at $30 / hour. Each five traps should
require an extra person-hour of work, so that’s factored in as well.
The marginal person-person hours above five traps are at the higher
noise-control labor rate. R code.

N_months_forward <- 12

N_months_labor <- N_months_forward / 2

hourly_rate_low <- 20

hourly_rate_high <- 30

costs <- costs +

(0:N_traps < 5 & 0:N_traps > 0) *
(N_months_labor * hourly_rate_low) +

(0:N_traps >= 5 & 0:N_traps < 10) *
(N_months_labor * (hourly_rate_low + 1 * hourly_rate_high)) +

(0:N_traps >= 10 & 0:N_traps < 15) *
(N_months_labor * (hourly_rate_low + 2 * hourly_rate_high)) +

(0:N_traps >= 15) *
(N_months_labor * (hourly_rate_low + 3 * hourly_rate_high))

Figure 3.45 provides with number of traps on the x-axis and profit/loss
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forecasts and uncertainty intervals on the y-axis.
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Figure 3.45: Each curve suggests the
optimal number of sound traps in each
building.

The optimal number of traps differs by building.

3.10 Next steps

Questions we may want to consider: how would we build a rev-
enue curve for a new building? Let’s say our utility function is rev-
enue. If we wanted to maximize expected revenue, we can take ex-
pectations at each station count for each building and choose the
trap numbers that maximizes expected revenue. This will be called
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a maximum revenue strategy. How can we generate the distribution
of portfolio revenue (the sum of revenue across all the buildings) un-
der the maximum revenue strategy from the draws of rev_pred we
already have?



4
Purpose, audience, and craft

As we prepare to scope, and work through, a data analytics project,
we must communicate variously if it is to have value. The repro-
ducible workflow shown in the last chapter at least provides value
as a communication to its immediate audience — its authors, as a
reference for what they accomplished — and to those with similar
needs1 to understand and critique the logical progression and scope 1 Those with similar needs are similar

to the intended audience for Joao
Caldeira et al., “Improving Traffic
Safety Through Video Analysis in
Jakarta, Indonesia,” in Nd Conference
on Neural Information Processing Systems
NeurIPS, 2018, 1–5.

of the project. That form of communiation, however, will be less valu-
able than other communication forms for different audiences and
purposes. Given the information compiled from our project — the
content — we now consider communicating various aspects for other
purposes and audiences.

The importance of adjusting communication is not unique to data
analytics. Let’s consider, say, how communication form differs when
for a news story versus an op-ed. Long-time editor of the op-ed at the
New York Times explains,

The approach to argument that I learned in classes at Berkeley was
much more similar to an op-ed than the inverted pyramid of daily
journalism or the slow, anecdotal flow of feature stories that had domi-
nated my professional life2. 2 Trish Hall, Writing to Persuade: How

to Bring People over to Your Side, First
edition (New York: Liveright Publishing
Corporation, a division of W.W. Norton
& Company, 2019).

The qualities of an op-ed piece must be, she writes: “surprising, con-
crete, and persuasive.” These qualities are similar to that we need
in business communication, which generally drive decisions. All
business writing begins with a) identifying the purpose for commu-
nicating and b) understanding your audiences’ scopes of knowledge
and responsibilities in the problem context. Neither is trivial; both
require research. To motivate this discussion, let’s consider and de-
construct two example memos — one for Citi Bike, the other for the
Dodgers — written for data science projects. It will be helpful for this
exercise to place both memos side-by-side for comparison as we work
through them below.
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4.1 Communication structure

Let’s begin discussing the communication structure from several
perspectives: purpose, narrative structure, sentence structure, and ef-
fective redundancy through heirarchy. Then, we consider audiences,
story, and the importance of revision.

4.1.1 Purpose and audience

In the first example, we return to Citi Bike. After project ideation,
and scoping, we want to ask Citi Bike’s head of data analytics to
let us write a more detailed proposal to conduct the data analytics
project. We accomplish this in 250 words. The title and body of the
fully composed memo, section 4.9, is in example 4.1:

Example 4.1 (Citi Bike 250-word memo). To inform rebalancing, let’s
explore docking and bike availability in the context of subway and
weather information.

We should explore station and ride data in the context of subway
and weather information to gain insight for “rebalancing,” what
our Dani Simmons explains is “one of the biggest challenges of any
bike share system, especially in . . . New York where residents don’t
all work a traditional 9-5 schedule, and though there is a Central
Business District, it’s a huge one and people work in a variety of other
neighborhoods as well.”

A rebalancing study by Columbia University Center for Spatial
Research3 previously identified trends in bike usage using heatmaps. 3 Juan Francisco Saldarriaga, “CitiBike

Rebalancing Study” (Spatial Informa-
tion Design Lab, Columbia University,
2013).

As those visualizations did not combine dimensions of space and time,
which will be helpful to uncover trends in bike and station availability
by neighborhood throughout a day, we can begin our analysis there.

NYC OpenData and The Open Bus Project provide published date,
time, station ID, and ride instances for all our docking stations and
bikes since we began service. To begin our project, we can visually
explore the intersection of trends in both time and location with this
data to understand problematic neighborhoods and, even, individual
stations, using up-to-date information.

Then, we will build upon the initial work, exploring causal factors
such as the availability of alternative transportation (e.g., subway
stations near docking stations) and weather. Both of which, we have
available data that can be joined using timestamps.

The project aligns with our goals to, in Simmons’s words, “be
innovative in how we meet this challenge.” Let’s draft a detailed
proposal.

It begins, in the title of this memo, with our purpose of writing, to
conduct data analysis on specifically identified data to inform the
issue of rebalancing, one of Citi Bike’s goals:

To inform rebalancing, let’s explore docking and bike availability in the
context of subway and weather information.

This is what Doumont4 calls a message. We should craft communica- 4 Doumont, Trees, Maps, and Theorems.
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tions with messages, not merely information. Doumont explains that
a message differs from raw information in that it presents “intelligent
added value,” that is, something to understand about the informa-
tion. A message interprets the information for a specific audience and
for a specific purpose. It conveys the so what, whereas information
merely conveys the what. What makes our title a message? Before
answering this, let’s compare one of Doumont’s examples of informa-
tion to that of a message. This sentence is mere information:

A concentration of 175 µg per m3 has been observed in urban areas.

A message, in contrast to information, would be the so what:

The concentration in urban areas (175 µg/m3) is unacceptably high.

In our title, we request an action, approval for the exploratory analysis
on specified data, for a particular purpose, to inform rebalancing. This
purpose also implies the so what: unavailable bikes or docking slots,
unbalanced stations, are bad. We’re asking to help remedy the issue. Figure 4.1: In a close call, the baseball

umpire spread his arms, signaling that
the Dodgers baserunner successfully
ran to the base faster than the catcher
could throw the ball to the base to
get him out — the runner stole the
base. Knowing when to try to steal is
strategic and depends on other events
that are at least partly measured as
data.

This beginning, if effective, is only because we wrote it for a par-
ticular audience. Our audience is head of data analytics at Citi Bike,
and presumably knows the problem of rebalancing; it is well-known
in, and beyond, the organization. Thus, our sentence implicitly refers
back to information our audience already knows5. Relying on his or

5 We will discuss this structure — old
before new — in detail later.

her knowledge means we do not need to first explain what rebalanc-
ing is or why it is a problem.

Let’s introduce a second example before digging further into the
structure of the Citi Bike memo. Having multiple examples to analyze
has the added benefit of allowing us to induce some general, but
effective, writing principles.

Professional teams in the sport of baseball, including the Los An-
geles Dodgers, make strategic decisions within the boundaries of the
sport’s rules for the purpose of winning games. One of those rules
involves stealing bases, as in figure 4.1. This concept is part of our next
example, written to the Los Angeles Dodgers’s Director of Quantita-
tive Analytics, Scott Powers. The title and body of the fully formatted
memo, section 4.9, is shown in example 4.2. Figure 4.2: The intended audience for

this memo, Dr. Scott Powers, is Director
of Quantitative Analytics at the Los An-
geles Dodgers. He earned his doctor of
philosophy in statistics from Stanford,
has authored publications in machine
learning, knows R programming, and
as an employee of the Dodgers, knows
their history. Powers manages a team
of data scientists; their responsibili-
ties include assessing player and team
performance.

Example 4.2 (Dodgers 250-word memo). Our game decisions should
optimize expectations. Let’s test the concept by modeling decisions
to steal.

Our Sandy Koufax pitched a perfect game, the most likely event se-
quence, only once: those, we do not expect or plan. Since our decisions
based on other most likely events don’t align with expected outcomes,
we leave wins unclaimed. To claim them, let’s base decisions on ex-
pectations flowing from decision theory and probability models. A
joint model of all events works best, but we can start small with, say,
decisions to steal second base.
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After defining our objective (e.g. optimize expected runs) we
will, from Statcast data, weight everything that could happen by
its probability and accumulate these probability distributions. Joint
distributions of all events, an eventual goal, will allow us to ask coun-
terfactuals — “what if we do this” or “what if our opponent does that”
— and simulate games to learn how decisions change win probability.
It enables optimal strategy.

Rational and optimal, this approach is more efficient for gaining
wins. For perspective, each added win from the free-agent market
costs 10 million, give or take, and the league salary cap prevents
unlimited spend on talent. There is no cap, however, on investing in
rational decision processes.

Computational issues are being addressed in Stan, a tool that
enables inferences through advanced simulations. This open-source
software is free but teaching its applications will require time. To
shorten our learning curve, we can start with Stan interfaces that use
familiar syntax (like lme4) but return joint probability distributions: R
packages rethinking, brms, or rstanarm. Perfect games aside, we can
test the concept with decisions to steal.

The beginning of this memo reads:

Our game decisions should optimize expectations. Let’s test the con-
cept by modeling decisions to steal.

In the first three words, the subject of this sentence, signals to our
audience something they have experience with: our game decisions.
It’s familiar. Then, we provide a call to action: our game decisions
should optimize expectations. Let’s test the concept by modeling decisions to
steal. As with the Citi Bike memo, the Dodgers memo begins with a
message and stated purpose. And as with Citi Bike, the information
in the title message of the Dodgers memo is shared knowledge with
our audience. In fact, we rely on the educational background of our
audience, who we know has earned a doctor of philosophy in statis-
tics, when including the concept to “optimize expectations”6 without 6 An expectation is specifically defined in

probability theory. To optimize is also a
specific mathematical concept.

first explaining what that is because we know, or from the audience’s
background, can assume the audience understands the concept.

So in both cases, we have begun with language and topics already
familiar to the audience, which follows the more general writing advice
from Doumont7, who instructs us to 7 Doumont, Trees, Maps, and Theorems.

put ourselves in the shoes of the audience, anticipating their situation,
their needs, their expectations. Structure the story along their line of
reasoning, recognizing the constraints they might bring: their familiar-
ity with the topic, their mastery of the language, the time they can free
for us.

What else do we know about chief analytics officers in general? Their
jobs require them to be efficient with their time. Thus, by starting
with our purpose, letting them know what we want them to do, we
are considerate of their “constraints” and “time they can free for us.”
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Beginning with a purpose and call-to-action also allow the exec-
utive to understand the memo’s relevance to them, in terms of their
decision-making, immediately; they have a reason to continue read-
ing.

The persuasive power of beginning with the main message for
your audience, or issue relevant to your audience, is nearly as time-
less as it is true. Cicero, the Roman philosopher with a treatise on
rhetoric, explained that we must not begin with details because “it
forms no part of the question, and men are at first desirous to learn
the very point that is to come under their judgment.”8 8 Marcus Tullius Cicero and J. S. Wat-

son, Cicero on oratory and orators, Land-
marks in rhetoric and public address
(Carbondale: Southern Illinois Univer-
sity Press, 1986).

Next, let’s review the structure of these memos to see whether
we’ve “structur[ed] the story along their line of reasoning.”

4.1.2 Common ground

Let’s compare the first sentences of the body of both examples. The
Citi Bike memo begins,

We should explore station and ride data in the context of subway
and weather information to gain insight for “rebalancing,” what our
Dani Simmons explains is “one of the biggest challenges of any bike
share system, especially in . . . New York where residents don’t all
work a traditional 9-5 schedule, and though there is a Central Business
District, it’s a huge one and people work in a variety of other neighbor-
hoods as well.”

This sentence starts with the title request, and then ties the purpose
— rebalancing — to corporate goals. It does so by quoting the com-
pany’s spokesperson, which serves as both evidence of the so what.
Offering, and accepting, Simmons’s quote serves a second purpose in
writing: it helps to establish common ground with our audience.

If we want to affect the behaviors and beliefs of the person in front
of us, we need to first understand what goes on inside their head and
establish common ground. Why? When you provide someone with
new data, they quickly accept evidence that confirms their precon-
ceived notions (what are known as prior beliefs) and assess coun-
terevidence with a critical eye9. Four factors come into play when 9 Tali Sharot, The Influential Mind, What

the Brain Reveals About Our Power
to Change Others (Henry Holt and
Company, 2017).

people form a new belief: our old belief (this is technically known
as the “prior”), our confidence in that old belief, the new evidence,
and our confidence in that evidence. Focusing on what you and your
audience have in common, rather than what you disagree about, en-
ables change. Let’s check for common ground in the Dodgers memo.
The first sentence of the body begins,

Our Sandy Koufax pitched a perfect game, the most likely event se-
quence, only once: those, we do not expect or plan.
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Sandy Koufax is one of the most successful Dodgers players in the
history of the franchise. He is one of less than 20 pitchers in the his-
tory of baseball to pitch a perfect game, something extraordinary. Our
audience, as an employee of the Dodgers, will be familiar with this
history. It is also something very positive — and shared — between
author and audience. It helps to establish common ground, in two
ways. Along with that positive, shared history, it sets up an example
of a statistical mode, one that we know the audience would agree is
unhelpful for planning game strategy because it is too rare, even if it
is a statistical mode. It helps to create common ground or agreement
that it may not be best to use statistical modes for making decisions.

In both memos, we are also trying to use an interesting fact that
may be unexpected or surprising in this context (Sandy Koufax, Dani
Simmons) to grab our audience’s attention. In journalism, this is one
way to create the lead. William Zinsser10 explains that the most im- 10 William Zinsser, On Writing Well,

Sixth, The Classic Guide to Writing
Nonfiction (Harper Resource, 2001).

portant sentence in any communication is the first one. If it doesn’t
induce the reader to proceed to the second sentence, your commu-
nication is dead. And if the second sentence doesn’t induce the au-
dience to continue to the third sentence, it’s equally dead. Readers
want to know — very soon — what’s in it for them.

Figure 4.3: William Zinsser: A long-
time teacher of writing at Columbia and
Yale, the late professor and journalist is
well-known for putting pen to paper, or
finger to key, as the case may be.

Your lead must capture the audience immediately cajoling them
with freshness, or novelty, or paradox, or humor, or surprise, or with
an unusual idea, or an interesting fact, or a question. Next, it must
provide hard details that tell the audience why the piece was written
and why they ought to read it.

4.1.3 Details

At this point in both memos, we have begun our memo with infor-
mation familiar to our audience, relevant to their job in decision-
making, and established our purpose. We have also started with
information they would agree with. We’ve created common ground.
The stage is set. What’s next? Here’s the next two sentences in the
body of the Citi Bike memo:

A rebalancing study11 by Columbia University Center for Spatial 11 Saldarriaga, “CitiBike Rebalancing
Study.”Research previously identified trends in bike usage using heatmaps.

As those visualizations did not combine dimensions of space and time,
which will be helpful to uncover trends in bike and station availability
by neighborhood throughout a day, we can begin our analysis there.

The first sentence introduces previous work — background — on re-
balancing studies and its limitations, and we proposed to start where
the prior work stopped. This accomplishes two objectives. First, it
helps our audience understand beginning details of our proposed
project. Second, it helps the audience see that our proposed work is
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not redundant to what we already know. Thus, we began the details
of our proposed solution. What is described in the Dodgers memo at
a similar point? This:

To claim them, let’s base decisions on expectations flowing from deci-
sion theory and probability models. A joint model of all events works
best, but we can start small with, say, decisions to steal second base.

As with Citi Bike, the next two sentences start introducing details of
the proposed project.

After introducing the nature of the proposed project in both
memos, we identify data that makes the proposed project feasible.
In the Citi Bike memo we identify specific categories of data and the
publicly available source of those data:

NYC OpenData and The Open Bus Project provide published date,
time, station ID, and ride instances for all our docking stations and
bikes since we began service.

Similarly, in the Dodgers memo,

After defining our objective (e.g. optimize expected runs) we will, from
Statcast data, weight everything that could happen by its probability
and accumulate these probability distributions.

It may seem we are less descriptive of the data than in the Citi Bike
memo, but the label “Statcast” signals to our particular audience a
group of specific, publicly available variables collected by the Statcast
system12. After identifying data, we explain how we plan its analysis. 12 Daren Willman, “Statcast Search

CSV Documentation” (MLB Advanced
Media, n.d.); Daren Willman, “Standard
Statistics” (MLB Advanced Media,
2020).

Having identified data, both memos then describe more details
of our proposed methodology. In Citi Bike, we discuss two stages.
We plan to graphically explore specific variables in search of specific
trends first.

To begin our project, we can visually explore the intersection of trends
in both time and location with this data to understand problematic
neighborhoods and, even, individual stations, using up-to-date infor-
mation.

Then, we specifically identify additional data we plan to join and
explore as causal factors for problem areas:

Then, we will build upon the initial work, exploring causal factors such
as the availability of alternative transportation (e.g., subway stations
near docking stations) and weather. Both of which, we have available
data that can be joined using timestamps.

Similarly, in the Dodgers memo, go into the planned methodology.
We plan to model expectations from the data:
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. . . from Statcast data, weight everything that could happen by its
probability and accumulate these probability distributions.

4.1.4 Benefits

Having described our data and methodology in both memos, we now
describe some benefits. In the Citi Bike memo,

The project aligns with our goals to, in Simmons’s words, “be innova-
tive in how we meet this challenge.”

And in the Dodgers memo, perhaps because we believe the benefits
are comparatively less obvious, or less proven, we further develop
them:

Joint distributions of all events, an eventual goal, will allow us to
ask counterfactuals — “what if we do this” or “what if our opponent
does that” — and simulate games to learn how decisions change win
probability. It enables optimal strategy.

Rational and optimal, this approach is more efficient for gaining wins.
For perspective, each added win from the free-agent market costs 10

million, give or take, and the league salary cap prevents unlimited
spend on talent. There is no cap, however, on investing in rational
decision processes.

4.1.5 Limitations

In the Citi Bike memo, we didn’t identify limitations. Should we?
In the Dodgers memo, we do, while also explaining how we plan

to overcome those limitations:

Computational issues are being addressed in Stan, a tool that enables
inferences through advanced simulations. This open-source software
is free but teaching its applications will require time. To shorten our
learning curve, we can start with Stan interfaces that use familiar
syntax (like lme4) but return joint probability distributions: R packages
rethinking, brms, or rstanarm.

4.1.6 Conclusion

Finally, we wrap up in both memos. in the Citi Bike memo, after
echoing the quote from Simmons, we state,

Let’s draft a detailed proposal.

Again, the Dodgers memo is similar. There, we circle back to our
introduction to Sandy Koufax and his perfect game, then conclude,

Perfect games aside, we can test the concept with decisions to steal.
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Again, this idea of echoing something from where we began is jour-
nalism’s complement to the lead.

Zinsser explains that, ideally, the ending should encapsulate the
idea of the piece and conclude with a sentence that jolts us with its
fitness or unexpectedness. Consider bringing the story full circle
— to strike at the end an echo of a note that was sounded at the
beginning. It gratifies a sense of symmetry.

Executives’ lines of reasoning commonly, but do not always, follow
the general document structure described above. If we don’t have
information otherwise, this is a good start.

4.2 Narrative structure

Figure 4.4: The five components of
narratives create tension that helps hold
audiences’ attention.

The above ideas — tools — are helpful in structuring and writing
persuasive memos, and longer communications for that matter. And
as writing lengthens, the next couple of related tools can be espe-
cially helpful in refining the narrative structure in a way that holds
our audience’s interest by creating tension. German dramatist Gus-
tav Freytag in the late 19th century illustrated a narrative arc used in
Shakespearean dramas, shown in figure 4.413. 13 This form of narrative has dominated

since Aristotle’s Poetics, but narrative
is broader. See Rick Altman, A Theory
of Narrative (New York: Columbia
University Press, 2008).

The primary elements of an applied analytics project may be
thought of as a well-articulated business problem, a data science
solution, and a measurable outcome to produce value for the or-
ganization. The analytics project may thus be conceptualized as a
narrative arc, with a beginning (problem), middle (analytics), and
end (overcoming of the problem), along with characters (analysts,
colleagues, clients) who play important roles.

Nancy Duarte14 used the narrative arc to conceptualize an inter- 14 Nancy Duarte, Resonate: Present Visual
Stories That Transform Audiences (Wiley,
2010).

esting alternative way to think about structure that creates tension:
alternating what is with what may be, as in figure 4.5.

Figure 4.5: Describing what may be after
what is creates a contrast, which we find
interesting.

We can repeat this approach, see figure 4.6, switching between what is
and what may be to maintain a sense of tension or interest throughout
a narrative arc. Once you become aware, you may be surprised how
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much you find writing in this form.

Figure 4.6: Duarte illustrates the re-
peated switching between what is and
what may be, which helps to hold audi-
ence interest throughout a narrative.This juxtaposition of two states for creating tension is another form of

comparison. Reconsider the narrative in The Next Rembrandt. Try to
label each unit of information as what was known before starting the
project, and what was knew information, learned in the planning or
work in the project.

Exercise 4.1 (Identify what is, what could be gaps). Revisit the two
example memos. Identify sentences or paired sentences that shift focus
from what is to what could be, creating a contrast.

Let’s look closer, now, to sentence structure.

4.3 Sentence structure

When we describe old before new, using sentence structure, it
generally improves understanding. The concept has also been de-
scribed as an information unit. “The information unit is what its name
implies: a unit of information. Information, in this technical gram-
matical sense, is the tension between what is already known or pre-
dictable and what is new or unpredictable.”15 As a general principle, 15 M. A. K. Halliday and Christian M.

I. M. Matthiessen, An Introduction to
Functional Grammar, 3rd ed (London :
New York: Arnold ; Distributed in the
United States of America by Oxford
University Press, 2004).

“readers follow a story most easily if they can begin each sentence
with a character or idea that is familiar to them, either because it was
already mentioned or because it comes from the context.”16

16 Joseph M Williams, Joseph Bizup,
and William T Fitzgerald, “17. Revising
Style,” in The Craft of Research (Univer-
sity of Chicago Press, 2016), 248–67.

Figure 4.7: Poster for Memento, a movie
designed to purposefully confuse the
audience by narrating the story (partly)
in reverse.

Consider an alternative flow of information. Put new information
before old information. Reversing the information flow will likely
confuse your audience. This point was clearly demonstrated in a
classic movie, Memento, where Director Christopher Nolan tells the
story of a man with anterograde amnesia (the inability to form new
memories) searching for someone who attacked him and killed his
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wife, using an intricate system of Polaroid photographs and tattoos
to track information he cannot remember. The story is presented as
two different sequences of scenes interspersed during the film: a se-
ries in black-and-white that is shown chronologically, and a series of
color sequences shown in reverse order (simulating for the audience
the mental state of the protagonist). The two sequences meet at the
end of the film, producing one complete and cohesive narrative. Yet,
the reversed order is (effectively) designed to hold the audience in
confusion so that they may get a sense of the confusion experienced
by someone with this illness. Indeed, that we demonstrate this with
film implies that ordering in visual representation matters too, and it
does. As such, we revisit this in the context of images.

For reasons similar, explain complex information last. This is par-
ticularly important in three contexts: introducing a new technical
term, presenting a long or complex unit of information, introducing
a concept before developing its details. And just as the old—new
paradigm helps to convey messages, so too does expressing crucial
actions in verbs. Make your central characters the subjects of those
verbs; keep those subjects short, concrete, and specific.

Exercise 4.2 (Identify sentence structure). Revisit the Dodgers memo
again. This time, for each sentence and words within the sentence, try
to identify whether the word or phrase is new or old. When determin-
ing this, consider both the words, phrases, and sentences preceding
the one under analysis. Of note, you may also consider the audience’s
background knowledge as a form of information.

4.4 Layering and heirarchy

Most communications benefit by providing multiple levels in which
the narrative may be read. Even emails and memos — concise com-
munications — enable two layers, the title and the main body. Thus,
the title should inform the audience of the relevance of the commu-
nication: what is it the author wants them to do or know. It should
also, or at least, invite the audience to learn more through the de-
tails of the main body. As the communication lengthens, more layers
may be used. The title’s purpose remains the same, as does the main
body. But we may add middle layers, headers and subheaders.17 These 17 Doumont, Trees, Maps, and Theorems.

should not be generic. Instead, the author should be able to read just
these and understand the gist of the communication. This concept
is well established where we intend persuasive communication. A
well-known instructor of legal writing, for example, explains how to
draft this middle layer:18 18 Ross Guberman, Point Made: How to

Write Like the Nation’s Top Advocates,
Second edition (Oxford ; New York, NY:
Oxford University Press, 2014).

Strong headings are like a good headline for a newspaper article: they
give [the audience] the gist of what [they] need to know, draw [them]
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into text [they] might otherwise skip, and even allow . . . a splash of
creativity and flair.

The old test is still the best. Could [the audience] skim your headings
and subheadings and know why [they should act]?

A good way to provide these “signposts” is to make your headings
complete thoughts that, if true, would push you toward the finish line.

In accord:19 19 Antonin Scalia and Bryan A Garner,
Making Your Case, Limited, The Art of
Persuading Judges (Thomson West,
2008).

Since clarity is the all-important objective, it helps to let the reader
know in advance what topic you’re to discuss. Headings are most
effective if they’re full sentences announcing not just the topic but your
position on that topic.

In short, headings should be what Doumont calls messages. Headings
provide “effective redundancy.” The redundancy gained from head-
ers may be two fold. They, first, introduce your message before the
detailed paragraphs and, second, may be collected up front, as a table
of contents. Even short communication benefit from headers, and
communications of at least several pages will likely benefit from such
a table of contents along with headers.

4.5 Audiences and purposes

In the two memos we wrote to the head of analytics with the pur-
pose to persuade our audience to approve continued work on our
project. Let’s compare that communication with the 124-word blog
post20 in example 4.3 describing a forthcoming (when published) 20 Joao Caldeira et al., “Improving

Traffic Safety Through Video Analysis:
Pulse Lab Jakarta,” Data Science for
Social Good, 2018.

data analytics project.

Example 4.3 (124-word Jakarta blog post). Improving Traffic Safety
Through Video Analysis. Nearly 2,000 people die annually as a result
of being involved in traffic-related accidents in Jakarta, Indonesia. The
city government has invested resources in thousands of traffic cameras
to help identify potential short-term (e.g. vendor carts in a hazardous
location) and long-term (e.g. poorly engineered intersections) safety
risks. However, manually analysing the available footage is an over-
whelming task for the city’s Transportation Agency. In support of
the Jakarta Smart City initiative, our team hopes to build a video-
processing pipeline to extract structured information from raw traffic
footage. This information can be integrated with collision, weather,
and other data in order to build models which can help public offi-
cials quickly identify and assess traffic risks with the goal of reducing
traffic-related fatalities and severe injuries.

Figure 4.8: Traffic congestion in Jakarta
is among the worst globally. The project
aimed to inform solutions.

The authors are from the Data Science for Social Good group at the
University of Chicago, who partnered with Jakarta Smart City and
UN Global Pulse, Jakarta.
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Who might be their primary audience? You may find a clue in
their post-project, award-winning paper21. May the blog post have 21 Caldeira et al., “Improving Traffic

Safety Through Video Analysis in
Jakarta, Indonesia.”

more than one intended audience? We’ll address this soon. For what
purpose may the blog have been written? What details are included
in the blog post? How specific are these details?

Exercise 4.3 (Analyze Jakarta blog post). Compare the intended
audience and structure and details of the Jakarta blog post to that in
their award-winning, post-project paper, written within about 1,500

words. Identify an overall structure to the blog post. Does information
in each sentence, or portion thereof, refer back to earlier sentences?

How is the structure of the blog post similar to, and different from,
the structure of the Citi Bike and Dodgers memos?

Exercise 4.4 (Write 250-word Jakarta Memo). Consider re-writing
the blog post using 250-words. Re-write it to persuade the head of
analytics at the Data Science for Social Good to get approval to move
forward with a full proposal. You can use additional details from the
post-write up paper, just ignore the described results of the project.
When writing, consider how your audience, head of data analytics,
and purpose may differ from the original material.

Let’s consider how another data science project has been de-
scribed, on a website and in a video. The Next Rembrandt22 involved 22 www.nextrembrandt.com

creating an original painting that most people would find indistin-
guishable from the late Rembrandt’s actual work.

Exercise 4.5 (Analyze The Next Rembrandt). Review The Next Rem-
brandt. What problem were they trying to solve? What were the data
the analysts worked with? With what details did they explain the
project scope and methods? Be specific. Who may have been their au-
dience? Assuming the audience, do you believe their choice of details
was appropriate? Do you feel this is a story? Why or why not? Do
you recognize any logical structure to the narrative? As we questioned
Knaflic’s example, do you believe this description of a data analytics
project uses language common to author and audience? What leads
you to believe this?

Exercise 4.6 (Write 250-word The Next Rembrandt Memo). You have
the benefit of knowing about the The Next Rembrandt project. but imag-
ine it had not yet begun or approved. Apply the structure from the two
memos above when writing a short paragraph or two, persuading the
head of analytics at one of the project’s sponsors to approve for you to
write a proposal for conducting such a data analytics project. Weave
the ideas for scoping that project with appropriate detail into your
writeup. Use whatever details you like from the project website, just
ignoring results.

When writing, consider how your audience, head of data analytics,
may differ from the original material.

We’ve focused on identifying our purpose for communicating
and developing structure for our communication. We must cen-
ter the communication, as mentioned, on our audiences’ scopes of
knowledge and responsibilities in our problem context. Words and
narrative must adapt to our audience.



78 scott spencer

Communication with any c-suite executive, if effective, begins with
relevance to that audience’s responsibilities and decision-making.

4.5.1 Chief Analytics Officer

Our discussions, communications, and exercises so far have focused
on an analytics audience. More formally, the Chief Analytics Officer
leads an organization’s data analytics strategy, driving data-related
business changes to transform company into a more analytics-driven
one23. Thus, your communications to this audience should begin 23 Minda Zetlin, “What Is a Chief

Analytics Officer? The Exec Who Turns
Data into Decisions,” CIO, November
2017.

with relevance to “head up a company’s data analytics operations,
transforming data into business value, and drives data-related busi-
ness change.” Only after establishing that message, should you delve
into your narrative and details.

4.5.2 Chief Marketing Officer

A Chief Marketing Officer shares some responsibilities with the an-
alytics officer and other executives, while other responsibilities are
primarily her own. Broadly, he or she leads responses to changing
circumstances; shapes products, sales strategies, and marketing ideas,
collaborating across the company.

To dig deeper into the background and motivations of a marketing
executive, we are guided by David Carr, who is Director of Market-
ing Strategy and Analysis at the London office of Digitas, a global
marketing agency.

Carr24 describes three main types of value that marketing drives: 24 David J Carr, “What Value Do You
Create? Marketings 3 Types of Value,”
Medium | Marketing, January 2019.1. business value: long and near-term growth, greater efficiency and

enhanced productivity
2. consumer value: attitudes and behaviors that effect brand choice,

frequency and loyalty
3. cultural value: shared beliefs that create a favorable environment in

which to operate and influence

He illustrates his research of, and experience with, these values
graphically, as a central circle, and in concentric rings identifies vari-
ous characteristics and details related to these values.

Exercise 4.7 (Compare and contrast executives). Review Carr’s graphic
describing details and characteristics of the three types of value that
marketing drives. Identify which of these are primarily the responsibil-
ity of marketing, and which of these responsibilities are shared with an
analytics executive.

Relatedly, Carr25 has mapped out the details for designing and 25 David J Carr, “A Map of Modern
Brand Building,” Medium | David J
Carr, November 2016.

managing a brand, and explained its interconnections:

The brand strategy should be influenced by the business strategy and
should reflect the same strategic vision and corporate culture. In addi-
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tion, the brand identity should not promise what the strategy cannot
or will not deliver. There is nothing more wasteful and damaging than
developing a brand identity or vision based on strategic imperative
that will not get funded. An empty promise is worse than no promise.

We can tie many aspects of brand building and marketing value to
measurements and data. Carr explains how marketing does — and
should — work with data.26 His article suggests how we should craft 26 David J Carr, “Data Is the New Oil:

Dirty, Misunderstood, Polluting the
World & Pulled from All the Wrong
Places,” Medium | Redwhale, January
2018.

data-driven messages for marketing executives.

4.5.3 Chief Executive Officer

Typically, the chief analytics and marketing officers report directly
to the CEO, who has ultimate responsibility to drive the business.
Bertrand27 reviews empirical studies on the characteristics of CEOs. 27 Marianne Bertrand, “CEOs,” Annual

Review of Economics 1 (2009): 121–49.They write, while “modern-day CEOs are more likely to be general-
ists,” more than one quarter of those running fortune 500 companies
have earned an MBA. The core educational components of the MBA
program at Columbia, for example, include managerial statistics,
business analytics, strategy formulation, marketing, financial ac-
counting, corporate finance, managerial economics, global economic
environment, and operations management.28 This type of curricula 28 Columbia University, “MBA Core

Curriculum,” Columbia Business School
(https://www8.gsb.columbia.edu/programs/mba/academics/core-
curriculum, 2020).

suggests the CEO’s vocabulary intersects with both analytics and
marketing. Indeed, Bertrand explains that “current-day CEOs may re-
quire a broader set of skills as they directly interact with a larger set
of employees within their organization.” If they are fluent in the ba-
sics of analytics and marketing, their responsibilities are both broader
and more focused on leading the drive for creating business value.
Our communications with the CEO should begin with and remained
focused on how the content of our communication helps the CEO
with their responsibilities.

4.6 Multiple or mixed audiences

We should keep in mind that audiences29 have a continuum of 29 Note the plural. While we have iden-
tified a single person in the example
memo, that memo may be passed
to others on his team — it may have
secondary audiences.

knowledge. Everyone is a specialist on some subjects and a non-
specialist on others. Moreover, even a group of all specialists could
be subdivided into more specialized and less specialized readers.
Specialists want details. Specialists want more detail because they
can understand the technical aspects, can often use these in their own
work, and require them anyway to be convinced. Non-specialists
need you to bridge the gap. The less specialized your audience, the
more basic information is required to bridge the gap between what
they know and what the document discusses: more background at
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the beginning, to understand the need for and importance of the
work; more interpretation at the end, to understand the relevance
and implications of the findings.

Frequently we encounter mixed audiences. Audiences are multi-
ple, for each reader is unique. Still, readers can usefully be classified
in broad categories on the basis of their proximity both to the subject
matter (the content) and to the overall writing situation (the context).
Primary readers are close to the situation in time and space. Uncer-
tainty of the knowledge of a reader is like having a mixed audience,
one knowing more than the other. Writing for a mixed audience is,
thus, quite challenging. That challenge to write for a mixed audience
is to give secondary readers information that we assume the primary
readers know already while keeping the primary reader interested.
The solution, conceptually, is simple: just ensure that each sentence
makes an interesting statement, one that is new to all readers — even
if it includes information that is new to secondary readers only. Thus,
make each sentence interesting for all audiences. Let’s consider an-
other of Doumont’s examples. The first sentence in the example,

We worked with IR.

may not work because IR may be unfamiliar to some in the audience.
One might try to fix the issue by defining the word or, in this case,
the acronym:

We worked with IR. IR stands for information Resources and is a new
department.

But that isn’t ideal either because those who already know the mean-
ing aren’t given new information. It is, in fact, pedantic. The better
approach is to weave additional information, like a definition, into
the information that the specialist also finds interesting, like so:

We worked with the recently launched Information Resources (IR)
department.

Looking back at the Dodgers memo in example 4.2, consider the
difference between

After defining our objective (e.g. optimize expected runs) we will, from
Statcast data, weight everything that could happen by its probability
and accumulate these probability distributions.

and

After defining our objective (e.g. optimize expected runs) we will,
from Statcast data, compute expectations. Expectations are computed
by weighting everything that could happen by its probability and
accumulate these probability distributions.



p( persuasion | data, analysis, storytelling ) 81

Notice the difference? The former sentence weaves the definition of
an expectation into the sentence to help any secondary audience less
familiar. The latter sentence explicitly defines expectations, which the
Director of Quantitative Analytics may find patronizing, a reaction
we want to avoid, especially when trying to persuade.

Word choice, and what we emphasize, can be subtle. What if we
had started the opening sentence with

The most likely sequence of events on defense is a perfect game —
occurring just 23 times in major-league baseball, once by our own
Sandy Koufax.

instead of the actual sentence used,

Our Sandy Koufax pitched a perfect game, the most likely event se-
quence, only once: those, we do not expect or plan.

In the first, unused, version, we start and emphasize the aspect of a
perfect game as being the most likely sequence of events. In the sec-
ond, we begin with a more personal and positive tone, more subtly
adding a parenthetical about the part of a perfect game we want to
emphasize and build from.

What about communicating details of the statistical analysis?
This is no different. The details of data analysis can be explained
well to audiences not specializing in data science or statistics, as
demonstrated beautifully in The Art of Statistics30. The text should be 30 D. J. Spiegelhalter, The Art of Statistics:

How to Learn from Data, First US edition
(New York: Basic Books, 2019).

studied, then, for exemplary practices in communicating about these
technical concepts.

4.7 Story

At this point, we’ve identified a problem or opportunity upon which
our entity may decide to act. We’ve found data and considered how
we might uncover insights to inform decisions. We’ve scoped an
analytics project. In beginning to write, we’ve considered document
structure, sentence structure, and narrative. We’ve also begun to
consider our audience. Let’s now focus on how we may directly
employ story. A little research on story, though, reveals differences
in use of the term. The Oxford English Dictionary defines story31 31 “"Story, N.",” Oxford English Dictio-

nary, 2015.generally as a narrative:

An oral or written narrative account of events that occurred or are
believed to have occurred in the past. . .

Distinguished novelist E.M. Forster famously described story as “a
series of events arranged in their time sequence.” Of note, he also
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compares and distinguishes story from plot: “plot is also a narrative
of events, the emphasis falling on causality: ‘The king died and then
the queen died’ is a story. But ‘the king died and then the queen died
of grief’ is a plot. The time sequence is preserved, but the sense of
causality overshadows it.”32 But not just any narrative works for 32 E. M. Forster, Aspects of the Novel

(United Kingdom: Edward Arnold,
1927).

moving our audiences to act33. Let’s consider other points of view.
33 Harari, Sapiens.

4.7.1 Unexpected change and information gaps

To understand the narrative arc of successful stories, John Yorke stud-
ied numerous stories, and from those induced general principles34. 34 John Yorke, Into the Woods: A Five-Act

Journey into Story (The Overlook Press,
2015).

A journalist and author, too, has studied narrative structure but,
with a different approach — he focuses on the cognitive science and
psychology of how our mind works and relates those characteris-
tics to story35. Story, writes Storr, typically begins with “unexpected 35 Will Storr, Science of Storytelling (New

York, NY: Abrams Books, 2020).change”, the “opening of an an information gap”, or both. Humans
naturally want to understand the change, or close that gap; it be-
comes their goal. Language of messages and information that close
the gap, then, form what we may think of as narrative’s plot.

Indeed, Storr suggests that the varying so-called designs for plot
structure36 are all really different approaches to describing change: 36 For example, Blake Snyder, Save the

Cat!: The Last Book on Screenwriting
You’ll Ever Need (S.l.: Michael Wiese,
2013); Christopher Booker, The Seven
Basic Plots: Why We Tell Stories (London
; New York: Continuum, 2004).

But I suspect that none of these plot designs is actually the ‘right’
one. Beyond the basic three acts of Western storytelling, the only plot
fundamental is that there must be regular change, much of which
should preferably be driven by the protagonist, who changes along
with it. It’s change that obsesses brains. The challenge that storytellers
face is creating a plot that has enough unexpected change to hold
attention over the course of an entire novel or film. This isn’t easy.
For me, these different plot designs represent different methods of
solving that complex problem. Each one is a unique recipe for a plot
that moves relentlessly forwards, builds in intrigue and tension and
never stops changing.

A quantitative analysis of over 100,000 narratives suggests this too37. 37 David Robinson, “Examining the Arc
of 100,000 Stories: A Tidy Analysis,”
Variance Explained, April 2017.

We evolved for recognizing change, and for cause and effect. Thus,
a narrative or story is driven forward by linking together change
after change as instances of cause and effect. Indeed, to create initial
interest, we only need to foreshadow change.

The need to show change extends to graphics stories, too. Science
graphics editor at The New York Times, Jonathan Corum, explained
the importance of change.38 38 Jonathan Corum, “See, Think, Design,

Produce 3,” 13pt Information Design
(http://style.org/stdp3/, March 2016).

. . .
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4.7.2 Examples

Let’s consider a couple of narratives in data science. The short narra-
tives in Howard Wainer’s excellent book, each about a data science
concept that people frequently misunderstand39, are exemplary. He 39 Howard Wainer, Truth or Truthiness,

Distinguishing Fact from Fiction by
Learning to Think Like a Data Scientist
(Cambridge: Cambridge University
Press, 2016).

begins each of these by setting up a contrast or information gap. In
chapter 1, for example, he teaches the “Rule of 72” as a heuristic to
think about compounding quantities by posing a question:

Great news! You have won a lottery and you can choose between one
of two prizes. You can opt for either:

1. $10,000 every day for a month, or

2. One penny on the first day of the month, two on the second, four on
the third, and continued doubling every day thereafter for the entire
month.

Which option would you prefer?

Similarly, in chapter 2, Wainer teaches us implications of the law of
large numbers by exposing an information gap. Again, he uses a
question:

“Virtuosos becoming a dime a dozen,” exclaimed Anthony Tommasini,
chief music critic of the New York Times in his column in the arts
section of that newspaper on Sunday, August 14, 2011.

. . .

But why?

Once he has setup his narratives, he bridges the gap. Let’s keep in
mind that his purpose in these stories are for audience awareness. To
teach. We can adapt these narrative concepts, though, in communica-
tions for other purposes.

Exercise 4.8 (Review example memos for story). By this discussion,
are the Citi Bike and Dodgers memos a story? If not, what they may
lack? If so, explain what structure or form makes them a story. Do the
story elements — or would they if used — add persuasive effect?

Rabbit Hole (Inner workings of narrative). For a detailed understanding
of narrative, consult seminal and recent work.40 40 Altman, A Theory of Narrative; Mieke

Bal, Narratology: Introduction to the
Theory of Narrative (Toronto; Buffalo;
London: University of Toronto Press,
2017); Paul Ricoeur, Time and Narrative.
Vol. 1: ..., trans. Kathleen McLaughlin,
Repr (Chicago, Ill.: Univ. of Chicago
Press, 1984); Paul Ricoeur, Time and
Narrative. Vol. 2: ..., trans. Kathleen
McLaughlin and David Pellauer, Repr
(Chicago, Ill.: Univ. of Chicago Press,
1985); Paul Ricoeur, Time and Narrative.
Vol. 3: ..., trans. Kathleen Blamey and
David Pellauer, Repr (Chicago: Univ. of
Chicago Pr, 1988).

4.8 The importance of revision

"We write a first draft for ourselves; the drafts thereafter
increasingly for the reader."41 Revision lets us switch from writing to

41 Joseph Williams and Gregory
Colomb, Style: Toward Clarity and Grace,
Toward Clarity and Grace (University of
Chicago Press, 1990).

understand to writing to explain. Switching audience is critical, and
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not doing so is a common mistake. Schimel explains one manifesta-
tion of the error:42

42 Schimel, Writing Science.

Using an opening that explains a widely held schema is a flaw com-
mon with inexperienced writers. Developing scholars are still learning
the material and assimilating it into their schemas. It isn’t yet ingrained
knowledge, and the process of laying out the information and argu-
ments, step by step, is part of what ingrains it to form the schema.
Many developing scholars, therefore, have a hard time jumping over
this material by assuming that their readers take it for granted. Rather,
they are collecting their own thoughts and putting them down. There
is nothing wrong with explaining things for yourself in a first draft.
Many authors aren’t sure where they are going when they start, and it
is not until the second or third paragraph that they get into the meat of
the story. If you do this, though, when you revise, figure out where the
real story starts and delete everything before that.

Revision gives us opportunity to focus on our audience once we un-
derstand what we have learned. This benefit alone is worth revision.

But it does more, especially when we allow time to pass between
revisions: “If you start your project early, you’ll have time to let your
revised draft cool. What seems good one day often looks different
the next.”43 As you revise, read aloud. While normal conversations 43 Wayne C Booth et al., “13. Organiz-

ing Your Argument,” in The Craft of
Research, Fourth (University of Chicago
Press, 2016).

do not typically follow grammatically correct language, well-written
communications should smoothly flow when read aloud. Try reading
this sentence aloud, following the punctuation:

When we read prose, we hear it. . . it’s variable sound. It’s sound with
— pauses. With emphasis. With, well, you know, a certain rhythm.44 44 Richard Goodman, The Soul of Creative

Writing (Routledge, 2008).

And when revising, consider each word and phrase, and test whether
removing that word or phrase changes the context or meaning of
the sentence for your audience. If not, remove it. In a similar manner,
when choosing between two words with equally precise meaning, it
is generally best to use the word with fewer syllables or that flows
more naturally when read aloud.

Exercise 4.9 (Revise a colleague’s memo). Exchange a draft memo, and
suggest a few revisions by applying the concepts we’ve covered.

4.9 Example memos

We will revisit the fully-formatted example Citi Bike and Dodgers
memos that follow:
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To CitiBike  2019 February 2 
 Director of Analytics 

To inform rebalancing, let’s explore docking and bike availability 
in the context of subway and weather information. 

We should explore station and ride data in the context of subway and 
weather information to gain insight for “rebalancing,” what our Dani Sim-
mons explains is “one of the biggest challenges of any bike share system, 
especially in … New York where residents don’t all work a traditional 9-5 
schedule, and though there is a Central Business District, it’s a huge one and 
people work in a variety of other neighborhoods as well.” 

A rebalancing study (Saldarriaga, 2013) by Columbia University Center for 
Spatial Research previously identified trends in bike usage using heatmaps. 
As those visualizations did not combine dimensions of space and time, 
which will be helpful to uncover trends in bike and station availability by 
neighborhood throughout a day, we can begin our analysis there. 

NYC OpenData and The Open Bus Project provide published date, time, 
station ID, and ride instances for all our docking stations and bikes since we 
began service. To begin our project, we can visually explore the intersection 
of trends in both time and location with this data to understand problematic 
neighborhoods and, even, individual stations, using up-to-date information. 

Then, we will build upon the initial work, exploring causal factors such as 
the availability of alternative transportation (e.g., subway stations near 
docking stations) and weather. Both of which, we have available data that 
can be joined using timestamps. 

The project aligns with our goals to, in Simmons’s words, “be innovative in 
how we meet this challenge.” Let’s draft a detailed proposal. 

Sincerely,  
Scott Spencer 

 

Saldarriaga, Juan Francisco. CitiBike Rebalancing Study. Spatial Information Design 
Lab, Columbia University, 2013. http://spatialinformationdesignlab.org/projects/cit-
ibike-rebalancing-study. 
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To Scott Powers  2019 February 2 
 Director, Quantitative Analytics 

Our game decisions should optimize expectations. Let’s  
test the concept by modeling decisions to steal. 

Our Sandy Koufax pitched a perfect game, the most likely event se-
quence, only once: those, we do not expect or plan. Since our decisions 
based on other most likely events don’t align with expected outcomes, 
we leave wins unclaimed. To claim them, let’s base decisions on expec-
tations flowing from decision theory and probability models. A joint 
model of all events works best, but we can start small with, say, decisions 
to steal second base. 

After defining our objective (e.g. optimize expected runs) we will, from 
Statcast data, weight everything that could happen by its probability and 
accumulate these probability distributions. Joint distributions of all 
events, an eventual goal, will allow us to ask counterfactuals — “what if 
we do this” or “what if our opponent does that” — and simulate games to 
learn how decisions change win probability. It enables optimal strategy. 

Rational and optimal, this approach is more e�cient for gaining wins. For 
perspective, each added win from the free-agent market costs 10 million, 
give or take, and the league salary cap prevents unlimited spend on tal-
ent. There is no cap, however, on investing in rational decision processes. 

Computational issues are being addressed in Stan, a tool that enables 
inferences through advanced simulations. This open-source software is 
free but teaching its applications will require time. To shorten our learn-
ing curve, we can start with Stan interfaces that use familiar syntax (like 
lme4) but return joint probability distributions: R packages rethinking, 
brms, or rstanarm. Perfect games aside, we can test the concept with 
decisions to steal. 

Sincerely,  
Scott Spencer 



5
Persuasion and biases

Should we use data science to persuade others? The late Robert
Abelson thought so when he published Statistics as Principled Argu-
ment in 1995.1 But since then, this question has been under the public 1 Robert P Abelson, Statistics as Prin-

cipled Argument (Psychology Press,
1995).

eye as we try to correct the replication crisis we mentioned in section
2.4. A special interest group has formed in service of this correction.2 2 Chat Wacharamanotham et al., “Spe-

cial Interest Group on Transparent
Statistics Guidelines,” The 2018 CHI
Conference, April 2018, 1–441.

They explain,

we propose to refer to transparent statistics as a philosophy of statistical
reporting whose purpose is to advance scientific knowledge rather than to
persuade. Although transparent statistics recognizes that rhetoric plays
a major role in scientific writing [citing Abelson], it dictates that when
persuasion is at odds with the dissemination of clear and complete
knowledge, the latter should prevail.

Andrew Gelman poses the question, too:3 3 Andrew Gelman, “Ethics in Statistical
Practice and Communication: Five
Recommendations,” Significance 15, no.
5 (October 2018): 40–43.

Consider this paradox: statistics is the science of uncertainty and
variation, but data-based claims in the scientific literature tend to be
stated deterministically (e.g. “We have discovered . . . the effect of X on
Y is . . . hypothesis H is rejected”). Is statistical communication about
exploration and discovery of the unexpected, or is it about making a
persuasive, data-based case to back up an argument?

Only to answer:

The answer to this question is necessarily each at different times, and
sometimes both at the same time.

Just as you write in part in order to figure out what you are trying to
say, so you do statistics not just to learn from data but also to learn
what you can learn from data, and to decide how to gather future data
to help resolve key uncertainties.

Traditional advice on statistics and ethics focuses on professional in-
tegrity, accountability, and responsibility to collaborators and research
subjects.
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All these are important, but when considering ethics, statisticians must
also wrestle with fundamental dilemmas regarding the analysis and
communication of uncertainty and variation.

Exercise 5.1 (Discuss persuasion’s (mis)applications). Gelman seems
to place persuasion with deterministic statements and constrasts
that with the communication of uncertainty. How do you interepret
Gelman’s statement? Must we trade uncertainty for persuasive argu-
ments? Discuss these issues and the role of persuasion, if any, in the
context of a data analytics project.

5.1 Methods of persuasion

A means of persuasion “is a sort of demonstration (for we are
most persuaded when we take something to have been demon-
strated),” writes Aristotle.4 Consider, first, appropriateness of tim- 4 Aristotle and C. D. C. Reeve, Rhetoric

(Indianapolis ; Cambridge: Hackett
Publishing Company, Inc, 2018).

ing and setting, Kairos. Can the entity act upon the insights from
your data analytics project, for example? What affect may acting at
another time of place mean for the audience? Second, arguments
should be based on building common ground between listener and
speaker, or listener and third-party actor. Common ground may
emerge from shared emotions, values, beliefs, ideologies, or anything
else of substance. Aristotle referred to this as pathos. Third, Argu-
ments relying on the knowledge, experience, credibility, integrity,
or trustworthiness of the speaker — ethos — may emerge from the
character of the advocate or from the character of another within
the argument, or from the sources used in the argument. Fourth,
the argument from common ground to solution or decision should
be based on the syllogism or the syllogistic form, including those of
enthymemes and analogies. Called logos, this is the logical compo-
nent of persuasion, which may reason by framing arguments with
metaphor, analogy, and story that the audience would find familiar
and recognizable. Persuasion, then, can be understood as researching
the perspectives of our audience about the topic of communication,
and moving from their point of view “step by step to a solution,
helping them appreciate why the advocated position solves the prob-
lem best.”5 The success of this approach is affected by our accuracy 5 Richard M. Perloff, The Dynamics of

Persuasion: Communication and Attitudes
in the 21st Century, Sixth edition (New
York: Routledge, Taylor & Francis
Group, 2017).

and transparency.

Exercise 5.2 (Kairos, pathos, ethos, logos in Citi Bike memo). In the
Citi Bike memo, example 4.1, identify possible audience perspectives
of the communicated topic. In what ways, if at all, did the communi-
cation seek to start with common ground? Do you see any appeals to
credibility of the author or sources? What forms of logic were used in
trying to persuade the audience to approve of the request? Consider
whether other or additional approaches to kairos, pathos, ethos, and
logos could improve the persuasive effect of the communication.
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Exercise 5.3 (Kairos, pathos, ethos, logos in Dodgers memo). In the
Dodgers memo, example 4.2, identify possible audience perspectives
of the communicated topic. In what ways, if at all, did the communi-
cation seek to start with common ground? Do you see any appeals to
credibility of the author or sources? What forms of logic were used
in trying to persuade the audience to take action? Consider whether
other or additional approaches to kairos, pathos, ethos, and logos
could improve the persuasive effect of the communication.

Exercise 5.4 (Kairos, pathos, ethos, logos in Dodgers proposal). In
the second Dodgers example — the draft proposal at the end of this
chapter, section 5.9 — is the communication approach identical to
that in the Dodgers memo? If not, in what ways, if at all, did the
communication seek to start with common ground? Do you see any
appeals to credibility of the author or sources? What forms of logic
were used in trying to persuade the audience to take action? Consider
whether other or additional approaches to kairos, pathos, ethos, and
logos could improve the persuasive effect of the communication.

Exercise 5.5 (Kairos, pathos, ethos, logos in student memo). As with
the above exercises, examine your draft data analytics memo. Identify
how the audience may view the current circumstances and solution
to the problem or opportunity you have described. Remember that it
tends to be very difficult to see through our biases, so ask a colleague
to help provide perspective on your audience’s viewpoint. Have you
effectively framed the communication using common ground? Explain.

5.1.1 Accuracy

Narrative arguments must avoid any temptation for overstatement.
Strunk and White6 warn: 6 William Strunk and E B White, The

Elements of Style, Fourth (Allyn &
Bacon, 2000).A single overstatement, wherever or however it occurs, diminishes the

whole, and a carefree superlative has the power to destroy, for readers,
the object of your enthusiasm.

Two prominent legal scholars, one a former United States Supreme
Court Justice, agree7: 7 Scalia and Garner, Making Your Case.

Scrupulous accuracy consists not merely in never making a statement
you know to be incorrect (that is mere honesty), but also in never
making a statement you are not certain is correct. So err, if you must,
on the side of understatement, and flee hyperbole. . . Inaccuracies can
result from either deliberate misstatement or carelessness. Either way,
the advocate suffers a grave loss of credibility from which it is difficult
to recover.

As in law, so too in the context of arguments supporting research:

But in a research argument, we are expected to show readers why our
claims are important and then to support our claims with good reasons
and evidence, as if our readers were asking us, quite reasonably, Why
should I believe that?. . . Instead, you start where your readers do, with
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their predictable questions about why they should accept your claim,
questions they ask not to sabotage your argument but to test it, to help
both of you find and understand a truth worth sharing (p. 109). . . .
Limit your claims to what your argument can actually support by
qualifying their scope and certainty (p. 129)8. 8 Wayne C Booth et al., The Craft of

Research, Fourth (University of Chicago
Press, 2016).

5.1.2 Transparency

Edward Tufte9 explains, “The credibility of an evidence presentation 9 Edward R. Tufte, Beautiful Evidence
(Graphics Press, 2006).depends significantly on the quality and integrity of the authors and

their data sources.”
Be accurate. Be transparent.

5.1.3 Syllogism and enthymeme

Leaving aside emotional appeals [for the moment], persuasion is possi-
ble only because all human beings are born with a capacity for logical
thought. It is something we all have in common. The most rigorous
form of logic, and hence the most persuasive, is the syllogism.

— Garner & Scalia, Making Your Case.

Syllogisms are one of the most basic tools of logical reasoning and
argumentation. They are structured argument, constructed with a
major premise, a minor premise, and a conclusion. Formally, the
structure is of the form,

All A are B.

C is A.

Therefore, C is B.

Such rigid use of “all” and “therefore” isn’t necessary, what’s neces-
sary is the meaning of each premise and conclusion.

We may sometimes abbreviate the syllogism, leaving one of the
premises implied (enthymeme). The effectiveness of this approach
depends upon whether your audience will, from their knowledge
and experience, naturally fill in the implied gap in logic.

Syllogism and enthymeme are a powerful tool for persuasion. But
the persuasive effect may be compromised — as tested experimen-
tally10 — by various audience biases and perceptions of credibility, 10 David E. Copeland, Kris Gunawan,

and Nicole J. Bies-Hernandez, “Source
Credibility and Syllogistic Reasoning,”
Memory & Cognition 39, no. 1 (January
2011): 117–27; J. St. B. T. Evans, Julie
L. Barston, and Paul Pollard, “On the
Conflict Between Logic and Belief
in Syllogistic Reasoning,” Memory &
Cognition 11, no. 3 (May 1983): 295–306.

discussed above. Logic also serves as a building block for a rhetoric
of narrative, i.e., a narrative that convinces the audience.

5.1.4 Narrative as argument

A rhetoric of narrative is logical, but also emotive and ethical.11 It
11 John Rodden, “How Do Stories
Convince Us? Notes Towards a Rhetoric
of Narrative,” College Literature 35, no. 1

(2008): 148–73.

may seem surprising to find argument common in fiction12, and

12 George Orwell, 1984 (New York:
Haughton Mifflin Harcourt, 2017) The
novel argues against political tyrrany.
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its value grows with non-fiction and communication for business
purposes. A rhetorical narrative functions, if effective, by adjusting
its ideas to its audience, and its audience to its ideas. The idea, in this
sense, includes the sequence of events that demonstrate change or
contrast, introduced in section 4.7. To enable action on an issue, in
Aristotle’s words, dispositio, it was essential to state the case through
description — writing imaginable pictures — and narration (telling
stories).13 13 Aristotle and Reeve, Rhetoric.

Exercise 5.6 (Imaginable pictures in example memos). Consider the
memo examples 4.1 and 4.2. Do either elicit images in the narratives?
Explain. In the Citi Bike memo, what might be a reason for quoting
Dani Simmons? Does that reason compare with or differ from how you
perceive possible reasons for referencing Sandy Koufax in example 4.2.

5.1.5 Priming and emotion

An introductory story can prime an audience for our main message:

priming is what happens when our interpretation of new information
is influenced by what we saw, read, or heard just prior to receiving
that new information. Our brains evaluate new information by, among
other things, trying to fit it into familiar, known categories. But our
brains have many known categories, and judgments about new infor-
mation need to be made quickly and efficiently. One of the “shortcuts”
our brains use to process new information quickly is to check the new
information first against the most recently accessed categories. Priming
is a way of influencing the categories that are at the forefront of our
brains.14 14 Linda L. Berger and Kathryn M.

Stanchi, Legal Persuasion: A Rhetorical
Approach to the Science, Law, Language
and Communication (Milton Park,
Abingdon, Oxon ; New York, NY:
Routledge, 2018).

As we make decisions based on emotion15, and we may even start

15 Antonio R. Damasio, Descartes’ Error:
Emotion, Reason, and the Human Brain
(New York: Putnam, 1994).

with emotion and back into supporting logic16, we can introduce

16 Jonathan Haidt, “The Emotional Dog
and Its Rational Tail: A Social Intu-
itionist Approach to Moral Judgment.”
Psychological Review 108, no. 4 (2001):
814–34.

our messages with emotional priming, too. Yet we should be careful
with this approach as audiences may feel manipulated and become
resistant — or even opposed — to our message.

5.1.6 Tone of an argument

When trying to persuade, authors sometimes approach changing
minds too directly:

Many of us view persuasion in macho terms. Persuaders are seen
as tough-talking salespeople, strongly stating their position, hitting
people over the head with arguments, and pushing the deal to a close.
But this oversimplifies matters. It assumes that persuasion is a boxing
match, won by the fiercest competitor. In fact, persuasion is different.
It’s more like teaching than boxing. Think of a persuader as a teacher,
moving people step by step to a solution, helping them appreciate why
the advocated position solves the problem best. Persuasion, in short, is
a process.17 17 Perloff, The Dynamics of Persuasion.
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Try gradually leading audiences to act, framing your message as
more reasonable among options, compromising, or any combina-
tion of these. And about those other options for decisions. Showing
our audience that our message is more reasonable among options
requires discussing those other options. If we do not discuss alterna-
tives, and our audience knows of them or learns of them, they may
find our approach less credible, and thus less persuasive, because we
did not consider them in advocating our message.

5.1.7 Narrative patterns

Stories are built upon narrative patterns18. These include patterns 18 Nathalie Henry Riche et al., Data-
Driven Storytelling (CRC Press, 2018).for argumentation, the action or process of reasoning systematically

in support of an idea, action, or theory. Patterns for argumentation
serve the intent of persuading and convincing audiences. Let’s con-
sider three such patterns: comparison, concretize, and repetition.

Comparison allows the narrator to show equality of both data sets,
to explicitly highlight differences and similarities, and to give reasons
for their difference. We have already seen various forms of graphical
comparison used for understanding. In Storytelling with Data19, the 19 Cole Nussbaumer Knaflic, Storytelling

with Data, A Data Visualization Guide
for Business Professionals (Wiley, 2015).

author offers an example showing graphical comparison to support a
call to action, see figure 5.1.

Figure 5.1: Knaflic’s example uses
comparison to persuade its audience to
hire employees.

Concretizing, another type of pattern useful in argumentation,
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shows abstract concepts with concrete objects. This pattern usually
implies that each data point is represented by an individual visual
object (e.g., a point or shape), making them less abstract than aggre-
gated statistics. Let’s consider, first, an example from Reuters. In
their article Drowning in Plastic20, the authors encode data as indi- 20 Simon Scarr and Marco Hernandez,

“Drowning in Plastic,” Reuters Graphics,
September 2019.

vidual images of plastic bottles collecting over time, figure 5.2, also
making comparisons between the collections and familiar references,
to demonstrate the severity of plastic misuse.

Figure 5.2: Authors use individual
images of bottles to concretize the
problem with plastic.

From a persuasive point of view, how does this form of data en-
coding compare with their secondary graphic, see figure 5.3, in the
same article:

Figure 5.3: This graphic reports plastic
(mis)use graphically and through
annotation.

Do the two graphics intend to persuade in different ways? Explain.
Here’s another example from news, the New York Times21, which 21 Farhad Manjoo, “I Visited 47 Sites.

Hundreds of Trackers Followed Me.”
New York Times, August 2019.
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represents each instance of tracking an individual who browsed
various websites. Figure 5.4 represents a snippet from the full infor-
mation graphic. The full graphic concretizes each instance of being
tracked. Notice each colored dot is timestamped and labeled with a
location. The intended effect is to convey an overwhelming sense to
the audience that online readers are being watched — a lot.

Figure 5.4: This snippet of the infor-
mation graphic shows concretizing
each instance of tracking someone’s
every browser click online to create an
overwhelming sense of being watched.

Review the full infographic and consider whether the use of con-
cretizing each timestamped instance, labeled by location, heightens
the realization of being tracked more than just reading the more ab-
stract statement that “hundreds of trackers followed me.”

Like concretizing, repetition is an established pattern for argu-
mentation. Repetition can increase a message’s importance and
memorability, and can help tie together different arguments about
a given data set. Repetition can be employed as a means to search for
an answer in the data. Let’s consider another information graphic,
which exemplifies this approach. An article by Roston22 uses several 22 Eric Roston and Blacki Migliozzi,

“What’s Really Warming the World?”
Bloomberg, June 2015.

rhetorical devices intended to persuade the audience that greenhouse
gasses cause global warming. A few of the repeated graphics and
questions are shown in figure 5.5, reproduced from the article.

5.2 Statistical persuasion

Let’s consider, now, how statistics informs persuasion.



p( persuasion | data, analysis, storytelling ) 95

Figure 5.5: Repetition is used in several
ways in this graphic-based news story.

5.2.1 Comparison is crucial

We’ve touched upon the importance of comparison. Tufte23 explains 23 Tufte, Beautiful Evidence.

the centrality of comparison, “The fundamental analytical act in sta-
tistical reasoning is to answer the question ‘Compared with what?’ ”

Abelson, too, forcefully argues that comparison is central: “The
idea of comparison is crucial. To make a point that is at all mean-
ingful, statistical presentations must refer to differences between
observation and expectation, or differences among observations.”
Abelson tests his argument through a statistical example,

The average life expectancy of famous orchestral conductors is 73.4
years.

He asks: Why is this important; how unusual is this? Would you
agree that answering his question requires some standards of com-
parison? For example, should we compare with orchestra players?
With non-famous conductors? With the public? With other males in
the United States, whose average life expectancy was 68.5 at the time
of the study reported by Abelson? With other males who have al-
ready reached the age of 32, the average age of appointment to a first
conducting post, almost all of whom are male? This group’s average
life expectancy was 72.0.
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5.2.2 Elements of statistical persuasion

Several properties of data, and its analysis and presentation, govern
its persuasive force. Abelson describes these as magnitude of effects,
articulation of results, generality of effects, interestingness of argu-
ment, and credibility of argument: MAGIC.

Magnitude of effects. The strength of a statistical argument is
enhanced in accord with the quantitative magnitude of support for
its qualitative claim. Consider describing effect sizes like the differ-
ence between means, not dichotomous tests. The information yield
from null hypothesis tests is ordinarily quite modest, because all one
carries away is a possibly misleading accept-reject decision. To drive
home this point, let’s model a realization from a linear relationship
between two independent, random variables normal(x | 0, 1) and
normal(y | 1, 1) by simulating them in R as follows:

set.seed(9)

y <- rnorm(n = 1000, mean = 1, sd = 1)

x <- rnorm(n = 1000, mean = 0, sd = 1)

And model them using a linear regression,
model_fit <- lm(y ~ x)

Results in a statistically significant p-value:

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-3.10551 -0.65170 0.02839 0.64702 2.74517

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.00517 0.03031 33.159 <2e-16 ***
x -0.06278 0.03059 -2.052 0.0404 *
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.9585 on 998 degrees of freedom

Multiple R-squared: 0.004202, Adjusted R-squared: 0.003204

F-statistic: 4.211 on 1 and 998 DF, p-value: 0.04041

Yet we know there is no actual relationship between the two vari-
ables. p-values say little, and can mislead. Here’s what a p-value of
less than, say, 0.01 means: If it were true that there were no system-
atic difference between the means in the populations from which the
samples came, then the probability that the observed means would
have been as different as they were, or more different, is less than one
in a hundred. This being strong grounds for doubting the viability of
the null hypothesis, the null hypothesis is rejected.
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More succinctly we might say it is the probability of getting the
data given the null hypothesis is true: mathematically, P(Data |
Hypothesis). There are two issues with this. First, and most problem-
atic, the threshold for what we’ve decided is significant is arbitrary,
based entirely upon convention pulled from a historical context not
relevant to much of modern analysis.

Secondly, a p-value is not what we usually want to know. Instead,
we want to know the probability that our hypothesis is true, given
the data, P(Hypothesis | Data), or better yet, we want to know the
possible range of the magnitude of effect we are estimating. To get
the probability that our hypothesis is true, we also need to know the
probability of getting the data if the hypothesis were not true:

P(H | D) =
P(D | H)P(H)

P(D | H)P(H) + P(D | ¬H)P(¬H)

Consider an example by Dragicevic24. He describes the statistical 24 Pierre Dragicevic, “Fair Statistical
Communication in HCI,” in Modern Sta-
tistical Methods for HCI, ed. Judy Robert-
son and Maurits Kaptein (Springer
International Publishing, 2016), 291–330.

information for four diet pills. Of the four pills, shown in figure
5.6, those interested should probably prefer pill 2, the data of which
shows no statistical significance, instead of pill 1, the data of which
does show statistical significance.

Figure 5.6: While the p-value of pill 2 is
not significant, users should choose it
instead of pill 1.

Decisions are better informed by comparing effect sizes and inter-
vals. Whether exploring or confirming analyses, show results using
an estimation approach — use graphs to show effect sizes and inter-
val estimates, and offer nuanced interpretations of results. Avoid the
pitfalls of dichotomous tests25 and p-values. Dragicevic writes, “The 25 Indeed, we are being warned to

abandon significance tests. Blakeley B.
McShane et al., “Abandon Statistical
Significance,” The American Statistician
73, no. sup1 (March 2019): 235–45.

notion of binary significance testing is a terrible idea for those who
want to achieve fair statistical communication.” In short, p-values
alone do not typically provide strong support for a persuasive argu-
ment. Favor estimating and using magnitude of effects. Let’s briefly
consider the remaining characteristics that Abelson describes of sta-
tistical persuasion. These:

Articulation of results. The degree of comprehensible detail in
which conclusions are phrased. This is a form of specificity. We want
to honestly describe and frame our results to maximize clarity (mini-
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mizing exceptions or limitations to the result) and parsimony (focus-
ing on consistent, connected claims).

Generality of effects. This is the breadth of applicability of the
conclusions. Over what context can the results be replicated?

Interestingness of argument. For a statistical story to be theo-
retically interesting, it must have the potential, through empirical
analysis, to change what people believe about an important issue.

Credibility of argument. Refers to believability of a research
claim, requiring both methodological soundness and theoretical
coherence.

Let’s get back to the ever-important concept of comparison.

5.3 Comparison through two numeric languages

In language describing quantities, we have two main ways to
compare. One form is additive or subtractive. The other is multiplica-
tive. We humans perceive or process these comparisons differently.
Let’s consider an example from Info We Trust26: 26 R J Andrews, Info We Trust: How to

Inspire the World with Data (Wiley, 2019).

The Apollo program crew had one more astronaut than Project Gem-
ini. Apollo’s Saturn V rocket had about seventeen times more thrust
than the Gemini-Titan II.

We process the comparative language of “seventeen times more”
differently than “1,700 percent more” or “33 versus 1.9”. Add and
subtract comparisons are easier for people to understand, especially
with small numbers. Relative to additive comparisons, multiplying
or dividing are more difficult. This includes comparisons expressed
as ratios: a few times more, a few times less. People generally try to
interpret multiplying operations through pooling, or repeat addition.

In this example, it may be better to show a graphical comparison,

Figure 5.7: A bar chart allows relative
comparisons between quantities that
may be generally more useful than
merely displaying numbers.

5.4 Statistics and narrative

We’ve discussed narrative and statistics as forms of persuasion.
And we’ve seen examples of their combination. Is the combination
more persuasive than either individual form? Some researchers have
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claimed that the persuasive effect depends on the data and statis-
tics.27 They argue from an empirical study that narrative can im- 27 Rebecca J. Krause and Derek D.

Rucker, “Strategic Storytelling: When
Narratives Help Versus Hurt the Per-
suasive Power of Facts,” Personality
and Social Psychology Bulletin 46, no. 2

(February 2020): 216–27.

prove less convincing data or statistics, but may actually detract from
strong numerical evidence. Their study involved survey responses
from participants that reviewed a1) less favorable data (a phone that
was relatively heavy and shatter-tested in a 3-foot drop) in the form
of a list and a2) the same data embedded within a narrative. The
data was then changed to be more favorable (a phone that was rela-
tively light and shatter-tested in a 30-foot drop) and b1) placed into
a list and b2) the same, more favorable data was embedded within
the same narrative. When comparing responses involving the less-
favorable data, the researchers found that the narrative form posi-
tively influenced participants relative to presenting the data alone.
But when comparing responses involving the more favorable data,
the relationship reversed. Respondents was more swayed by the data
alone than when presented with it embedded within the narrative.
Of note, there was no practical (or significant) difference in responses
between narratives with either data. They conclude, from the study,
that narratives operate by taking the focus off the data, which may
either help or harm a claim, depending on the strength of the data.

But a review of the actual narrative created for the study reveals
that the narrative was not about the thing generating the data (a
phone and its properties). Instead, the narrative was about a couple
hiking that encountered an emergency and used the phone during
the emergency. In other words, the data of the phone characteristics
amounted to what the advertising industry might call a “product
placement.” Product placements, of course, have been found to be
effective in transferring sentiment about the narrative to sentiment
about the product. But it would be dangerous to generalize from this
empirical study to potential effects and operations of other forms of
narrative. Instead of choosing between listing convincing data on its
own or embedding it as a product placement, we should consider
providing narrative context focused on the data and thing that generated it.
In other words, we can create a narrative that emphasizes the data,
instead of shifting our audiences’ focus from the data. And we can
create that narrative context using metaphor, simile, and analogy,
discussed next.

5.5 Comparison through metaphor, simile, analogy

Metaphor adds to persuasiveness by reforming abstract con-
cepts into something more familiar to our senses, signaling particular
aspects of importance, memorializing the concept, or providing co-
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herence throughout a writing.28 The abstract concepts we need help 28 Ward Farnsworth, Farnsworth’s Clas-
sical English Metaphor (David R. Godine
Publisher, 2016); Zoltán Kövecses,
Metaphor: A Practical Introduction, Sec-
ond (Oxford University Press, 2010);
Paul Ricoeur, The Rule of Metaphor:
Multi-Disciplinary Studies of the Creation
of Meaning in Language, trans. Robert
Czerny and Kathleen McLaughlin
(Toronto; Buffalo; London: University
of Toronto Press, 1993); George Lakoff
and Mark Johnson, Metaphors We Live by
(Chicago: University of Chicago Press,
1980).

explaining, ideas we need to make important, or the multiple ideas
we need to link, we call the target domain. Common source domains
include the human body, animals, plants, buildings and construc-
tions, machines and tools, games and Sport, money, cooking and
food, heat and cold, light and darkness, and movement and direc-
tion. Let’s consider some examples. We begin with short example 5.1,
excerpts from The Next Rembrandt.

Example 5.1 (Excerpt from The Next Rembrandt). To bring [Rem-
brandt] back, we distilled the artistic DNA from his work and used it
to create The Next Rembrandt. . . . To create new artwork using data
from Rembrandt’s paintings, we had to maximize the data pool from
which to pull information. . . . We created a height map using two
different algorithms that found texture patterns of canvas surfaces and
layers of paint. That information was transformed into height data,
allowing us to mimic the brushstrokes used by Rembrandt.

Try to identify the target and source domains. Do you believe
these source domains relate the target domains to something more fa-
miliar or concrete? For our second example, we return to Andrews’s
book, Info We Trust29. Andrews has more space to build the metaphor 29 Andrews, Info We Trust.

in example 5.2, using borrowing from the source domain of music.

Example 5.2 (Excerpt from Info We Trust). How do we think about the
albums we love? A lonely microphone in a smoky recording studio? A
needle’s press into hot wax? A rotating can of magnetic tape? A button
that clicks before the first note drops? No!

The mechanical ephemera of music’s recording, storage, and
playback may cue nostalgia, but they are not where the magic lies.
The magic is in the music. The magic is in the information that the
apparatuses capture, preserve, and make accessible. It is the same with
all information.

After setting up this metaphor, he repeatedly refers back to it
(example 5.3) as a form of shorthand each time:

Example 5.3 (References back to the music metaphor). When you
envision data, do not get stuck in encoding and storage. Instead, try
to see the music. . . . Looking at tables of any substantial size is a little
like looking at the grooves of a record with a magnifying glass. You
can see the data but you will not hear the music. . . . Then, we can see
data for what it is, whispers from a past world waiting for its music to
be heard again.

What, if anything, do you think use of this source domain adds to
the audiences understanding of data and information?

5.6 Patterns that compare, organize, grab attention

We can use patterns to “make the words they arrange more em-
phatic or memorable or otherwise effective.”30 In Classical English 30 Ward Farnsworth, Farnsworth’s Clas-

sical English Rhetoric (David R. Godine
Publisher, 2011).

Rhetoric, Farnsworth provides a wealth of examples, categorized. Un-
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expected word placement calls attention to them, creates emphasis
by coming earlier than expected or violating the reader’s expecta-
tions. Note that, to violate expectations necessarily means reserving a
technique like inversion for just the point to be made, lest the reader
come to expect it — more is less, less is more. Secondly, it can create
an attractive rhythm. Thirdly, when the words that bring full mean-
ing come later, it can add suspense, and finish more climactic.

These patterns can be the most effective and efficient ways to
show comparisons and contrasts. While Farnsworth provides a great
source of these rhetorical patterns in more classical texts, we can find
plenty of usage in something more relevant to data science. In fact,
we have already considered a visual form of repetition in section
5.1.7. Let’s consider this structure used in another example text for
data science, found in Observation and Experiment31. 31 Paul Rosenbaum, Observation and

Experiment: An Introduction to Causal
Inference (Harvard University Press,
2017).

Example 5.4 (Reversal of structure, repetition at the end). A covariate
is a quantity determined prior to treatment assignment. In the Pro-
CESS Trial, the age of the patient at the time of admission to the
emergency room was a covariate. The gender of the patient was a
covariate. Whether the patient was admitted from a nursing home was
a covariate.

The first sentence begins “A covariate is . . . ” Then, the next three
sentences reverse this sentence structure, and repeat to create empha-
sis and nuance to the reader’s understanding of a covariate. Here’s
another pattern from Rosenbaum’s excellent book:

Example 5.5 (Repetition at the start, parallel structure). One might
hope that panel (a) of Figure 7.3 is analogous to a simple randomized
experiment in which one child in each of 33 matched pairs was picked
at random for exposure. One might hope that panel (b) of Figure 7.3 is
analogous to a different simple randomized experiment in which levels
of exposure were assigned to pairs at random. One might hope that
panels (a) and (b) are jointly analogous to a randomized experiment
in which both randomizations were done, within and among pairs.
All three of these hopes may fail to be realized: there might be bias
in treatment assignment within pairs or bias in assignment of levels of
exposure to pairs.

Repetition and parallel structure are especially useful where, as in
these examples, the related sentences are complex or relatively long.
Let’s consider yet another pattern:

Example 5.6 (Asking questions and answering them). Where did
Fisher’s null distribution come from? From the coin in Fisher’s hand.

Rhetorical questions or those the author answers are a great way
to create interest when used sparingly. Seeing just a few examples
invites direct imitation of them, which tends to be clumsy. Immer-
sion in many examples allows them to do their work by way of a
subtler process of influence, with a gentler and happier effect on the
resulting style.
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5.7 Le mot juste — the exact word

Writing poetically, Goodman32 explains the importance of find- 32 Goodman, The Soul of Creative Writing.

ing the exact word. Le mot juste, in French, is how it’s expressed.
In our search we must also keep in mind, and use, words with the

appropriate precision, as Alice explains:

“When I use a word,” Humpty Dumpty said in rather a scornful tone,
“it means just what I choose it to mean—nothing more nor less.”

“The question is,” said Alice, “whether you can make words mean so
many different things.”

— Carroll, Lewis. Alice’s Adventures in Wonderland.

Yet empirical studies suggest variation in our understanding of
words that express quantity. For words meant to convey quantity,
their meanings vary more than Alice would like. A researcher33 re- 33 Scott Barclay et al., “Handbook for

Decision Analysis” (Decisions and
Designs, Inc., 1977).

ports survey responses from 23 NATO military officers who were
asked to assign probabilities to particular phrases if found in an in-
telligence report. Another, online survey34 of 46 individuals provided 34 Zonination, “Perceptions of Probabil-

ity and Numbers,” August 2015.responses to the question: What [probability/number] would you assign
to the phrase [phrase]? where the phrases matched those of the NATO
study. The combined responses in figure 5.8 show wide variation in
what probabilities individuals associate with words, although some
ordering or ranking is evident.

Chances Are Slight
Highly Unlikely

Almost No Chance
Little Chance
Probably Not

Unlikely
Improbable

We Doubt
About Even

Better Than Even
We Believe

Probably
Likely

Probable
Very Good Chance

Highly Likely
Almost Certainly

0 10 20 30 40 50 60 70 80 90 100
Perceived Probability

Figure 5.8: Results from the combined
studies reflect uncertainty in the proba-
bility that people associate with words.

As with variation in probabilities assigned to words about uncer-
tainty, the empirical study suggests variation in amounts assigned to
words about size, shown in Figure 5.9.
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Hundreds of

Scores of

Fractions of

Many

Several

Some

A lot

Dozens

A few

A couple

0.10 1.00 10.00 100.00 1,000.00 10,000.00 100,000.00
Perceived Count

Figure 5.9: Even words whose defini-
tions refer to counts have significant
variation in perceived meaning.

Variance in perception of the meaning of such words does not
imply we should avoid them altogether. It does mean, however, we
should be aware of the meaning others may impart and complement
them with numerals or graphic displays.

5.8 Heuristics and biases

Humans have two separate processes for understanding infor-
mation, which Kahneman35 labels as system one and system two. 35 Daniel Kahneman, Thinking, Fast and

Slow (Farrar, Straus and Giroux, 2013).If we are to find common ground, and move our audience to a new
understanding for decisionmaking, we must understand how they
think. Intuitive (system one) thinking — impressions, associations,
feelings, intentions, and preparations for actions — flow effortlessly.
This system mostly guides our thoughts.

Figure 5.10: Most of us immediately
sense emotion from this face, system
one processing, but would need to
work hard to mentally calculate 17 x 24,
system two processing.

System one uses heuristics, biases. Reflective (system two) think-
ing, in contrast, is slow, effortful, and deliberate. Both systems are
continuous, but system two typically monitors things, and only steps
in when stakes are high, we detect an obvious error, or rule-based
reasoning is required. For a sense of this difference, Kahneman pro-
vides exemplaray information that we process using system one, as
in figure 5.10, and system two, as in mentally calculating 17 x 24.
For other examples, consider figure 5.2 (system one) and figure 5.3
(processing may depend on familiarity with the graphic — a alluvial
diagram — and which comparisons are of focus within the graphic).

We have decades of empircal and theoretical research available36, 36 Thomas Gilovich, Dale Griffin, and
Daniel Kahnman, Heuristics and Biases,
ed. Thomas Gilovich, Dale Griffin, and
Daniel Kahneman, The Psychology
of Intuitive Judgment (Cambridge:
Cambridge University Press, 2009).

while theoretical foundations have long been in place.37

37 Joshua B Miller and Andrew Gel-
man, “Laplaces Theories of Cognitive
Illusions, Heuristics, and Biases” (De-
cember 2018).
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Kahneman gives executives ways to guard against some biases by
asking questions and recommending actions:38 38 Daniel Kahneman, Dan Lovallo, and

Olivier Sibony, “Before You Make That
Big Decision ...” Harvard Business Review
89, no. 6 (June 2011): 50–60.

self-interested biases | Is there any reason to suspect the team making
the recommendation of errors motivated by self-interest? Review the
proposal with extra care, especially for over optimism.

the affect heuristic | Has the team fallen in love with its proposal?
Rigorously apply all the quality controls on the checklist.

groupthink | Were there dissenting opinions within the team? Were
they explored adequately? Solicit dissenting views, discreetly if neces-
sary.

saliency bias | Could the diagnosis be overly influenced by an anal-
ogy to a memorable success? Ask for more analogies, and rigorously
analyze their similarity to the current situation.

confirmation bias | Are credible alternatives included along with the
recommendation? Request additional options.

availability bias | If you had to make this decision in a year’s time,
what inform-ation would you want, and can you get more of it now?
Use checklists of the data needed for each kind of decision.

anchoring bias | Where are the numbers from? Can there be . . . un-
substantiated numbers? . . . extrapolation from history? . . . a motiva-
tion to use a certain anchor? Re-anchor with data generated by other
models or benchmarks, and request a new analysis.

halo effect | Is the team assuming that a person, organization, or
approach that is successful in one area will be just as successful in
another? Eliminate false inferences, and ask the team to seek additional
comparable examples.

sunk-cost fallacy, endowment effect | Are the recommenders overly
attached to past decisions? Consider the issue as if you are a new
executive.

overconfidence, optimistic biases, competitor neglect | Is the base
case overly optimistic? Have a team build a case taking an outside
view: use war games.

disaster neglect | Is the worst case bad enough? Have the team con-
duct a premortem: imaging that the worst has happened, and develop
a story about the causes.

loss aversion | Is the recommending team overly cautious? Align
incentives to share responsibility for the risk or to remove risk.

Bias Bias

We increase persuasion by addressing these issues in anticipation
that our audience will want to know. It’s very hard to remain aware
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of our own biases, so we need to develop processes that identify
them and, most importantly, get feedback from others to help protect
against them. Get colleagues to help us: Present ideas from a neutral
perspective. Becoming too emotional suggests bias. Make analogies
and examples comparable to the proposal. Genuinely admit uncer-
tainty in the proposal, and recognize multiple options. Identify addi-
tional data that may provide new insight. Consider multiple anchors
in the proposal.

5.9 Brief proposals

We’ve covered a lot of material in these last two lectures, from
business writing, to visual components of communication and now
different forms of persuasion. We can use all these techniques to
help in writing a brief proposal to a chief analytics officer, asking
him or her to approve your analytics project. Recall the example
Dodgers memo? Let’s continue that example with a 750-word brief
proposal.39 To assess whether the example proposal accomplishes 39 Scott Spencer, “Proposal for Exploring

Game Decisions Informed by Expecta-
tions of Joint Probability Distributions,”
Proposal, February 2019.

its goals, note the audience. His background includes a doctor of
philosophy in Statistics, and experience with machine learning and
statistical programming in R. The example follows:

Exercise 5.7 (Deconstruct the Dodgers proposal). Try to identify the
document structure. Does it identify problems and goals? Data? Meth-
ods? Compare the structure, specificity and level of detail to both the
memo, and to the Jakarta writeups, which were written for different
purposes and audiences. Next, consider the tools we’ve covered in
business writing, starting with messages and goals, applying typo-
graphic best practices, aligning information with grids, integrating
graphics within paragraphs, linking words and graphics, annotation,
and use of comparison, metaphor, patterns, and examples or analogies
to persuade. How many can you find? If you were the director would
you be persuaded to approve of the project? Why or why not? How
might you edit the proposal to make it more persuasive?
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Proposal for exploring game decisions informed by  
expectations of joint probability distributions 

To: Scott Powers,  Director of Quantitative Analysis, Los Angeles Dodgers 
From: Scott Spencer, Faculty and Lecturer, Columbia University 

14 February 2019 

Our game decisions based on current modeling do not maximize spend per win. We wit-
nessed the mid-market Astros use analytics to overtake us in the 2017 World Series 
(Luhnow 2018ab). Our e�orts also do not maximize expected wins. But we can. To do 
so, we need to jointly model probabilities of all game events and base decisions on expec-
tations of those distributions. With adequate computing emerging, we can be �rst using 
the probabilistic programming language Stan and parallel processing. To demonstrate 
the concept, consider a probability model for decisions to steal second base, below, which 
suggests teams are too conservative, leaving wins unclaimed. �is model allows us to ask, 
for example—should Sanchez steal against Sabathia? Or against Pineda? 

1 Our current analyses do not optimize expected wins 

Seven terabytes of uncompressed data generated per game overshadow the lack of situa-
tional data needed for decision-making that maximizes expected utility. Consider that 
pitchers, on average, only face10 percent of major league batters regardless of game state; 
the reverse is true, too. Or when deciding whether a base runner should attempt to steal 
against a speci�c pitcher and catcher in a state of play, say, we are lucky to have any data. 
Common analyses and heuristics for these situations are inadequate: they not only over-
�t the data (if any exist), but also o�er no manner of estimating changes in probabilities 
for maximizing expected utility (winning the game). 

Accurately quantifying probabilities, and changes thereof, in a given context enable us to 
answer counterfactuals, from which we can build strategies that maximize our objectives 
(Parmigiani 2002). �is approach is possible at scale using Stan (Carpenter et al. 2017). 
It’s time to jointly model probabilities of all events. 

2 Modeling probabilities for steal success illustrates a broader bene�t 

To see the potential of implementing probability models, let’s consider, again, the deci-
sion to steal bases, given a speci�c counterfactual: 
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In a game against New York Yankees, should Milwaukee Brewers’s Lorenzo 
Cain attempt to steal second base with no one else on base and two outs be-
fore the seventh inning, against Gary Sanchez as catcher and Michael Pineda 
as pitcher? What if against Sanchez and CC Sabathia as pitcher? 

More speci�cally, how can we know the expectation that Cain’s attempt in each situation 
increases the probability of expected runs that inning and by how much? Using Stan, I’ve 
coded a generative model that along with play outcomes considers various information 
(runner foot-speed, catcher pop-time) and player characteristics, like pitcher handed-
ness. With the model, we have an answer that also shows the uncertainty. Given 2017 
data, this model suggests Cain should steal against Pineda, not Sabathia: 

Notably, we get these expectations without multiple trials of either scenario. More gen-
erally, this model suggests that on average team managers are too conservative, leaving 
runs unrealized: 

�e above is but one example of a more general approach that weighs probabilities of all 
possible outcomes to maximize expected utility. With broad implementation—jointly 
modeling the conditional probabilities of all relevant events—we can optimize decisions. 

vs. Pineda / Sanchez vs. Sabathia / Sanchez
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Figure 1. Of the two scenarios, Cain 
should only attempt to steal against the 
Sanchez–Pineda duo. 

Figure 2. When the change in expected 
runs is zero, managers should be indif-
ferent to attempted steals, saying go 
half the time. 

The black band represents the range of 
variation across managers’ decisions. 
At the intersection of indi�erence, 
managers tend to say steal only 10 
percent of the time, leaving oppor-
tunity.  
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PROPOSAL FOR EXPLORING GAME DECISIONS INFORMED BY EXPECTATIONS OF JOINT PROBABILITY DISTRIBUTIONS  3 

3 For value, compare an investment to free-agent costs 

A fully-realized model will require signi�cant e�ort from a team with deep experience in 
baseball, generative modeling, and Stan. To get the talent, we should compare cost to ac-
quiring expected wins from free-agents. Each win above a replacement-level player costs 
about 10 million per year (Swartz 2017). As with free-agent value over replacement 
player, game-time decisions informed from more accurate probabilities should add wins 
over a season. �e scope of what we can answer, moreover, goes beyond in-game strategy 
(player acquisitions, salary arbitration). More immediately, however, we can begin to im-
plement this approach for speci�c events, with a scope closer to the example above, being 
mindful that information learnt are conditional upon unmodeled context. 

4 For accuracy, compare model results to betting market odds 

Measuring performance of a fully-realized model may seem tricky: we only see the out-
come of our decisions. But we can, say, compare the accuracy of our estimates against the 
betting market where interested investors are trying to forecast game outcomes. 

5 Conclusion 

�e mid-market Astros show teams can do more with information. Millions in addi-
tional revenue—and more wins—await discovery through a joint, probability model of 
all events from which we can maximize conditional expectations. Let’s discuss how to 
draw the talent for a title worth our spend. 
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6
Layout, hierarchy, and integration

6.1 Visual presentation is communication

6.1.1 Typography

When we consider the visual presentation of communication, we
may first think about a data graphic. But consider this paragraph
from Elements of Style1, white space removed: 1 Strunk and White, The Elements of

Style.
Vigorouswritingisconcise.Asentenceshouldcontainnounnecessarywords,aparagraphnounnecessarysentences,forthesamereasonthatadrawingshouldhavenounnecessarylinesandamachinenounnecessaryparts.Thisrequiresnotthatthewritermakeallhissentencesshort,oravoidalldetailandtreatsubjectsonlyinoutline,butthateverywordtell.Asingleoverstatement,whereverorhoweveritoccurs,diminishesthewhole,andacarefreesuperlativehasthepowertodestroy,forreaders,theobjectofyourenthusiasm.

The visual presentation of communication involves all best practices
in typography and design. Adding white space between words,
just one of many components of typography, is an obvious decision.
It makes the advice from Strunk and White2 more readable, more 2 Their very-short, classic book on

writing would not be in its 50th Edition
were it not still valuable. Leading by
example, this tiny book provides dos
and don’ts with examples of each.
Re-read.

understandable:

Vigorous writing is concise. A sentence should contain no unnecessary
words, a paragraph no unnecessary sentences, for the same reason
that a drawing should have no unnecessary lines and a machine no
unnecessary parts. This requires not that the writer make all his sen-
tences short, or avoid all detail and treat subjects only in outline, but
that every word tell. A single overstatement, wherever or however it
occurs, diminishes the whole, and a carefree superlative has the power
to destroy, for readers, the object of your enthusiasm.

Best practices in visual presentation of communication go well be-
yond spacing between words. Matthew Butterick3 explains best prac- 3 Matthew Butterick, “Butter-

ick’s Practical Typography”
(https://practicaltypography.com/,
2018); Butterick credits a great deal
to, among others, Robert Bringhurst,
The Elements of Typographic Style, Third
(Hartley & Marks, 2004).

tices, well, best. Typography is the visual component of the written
word. “Typography is for the benefit of the reader”:

Most readers are looking for reasons to stop reading. . . . Readers have
other demands on their time. . . . The goal of most professional writing
is persuasion, and attention is a prerequisite for persuasion. Good
typography can help your reader devote less attention to the mechanics
of reading and more attention to your message.
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The typographic choices in the example memos, section 4.9, and
proposal, section 5.9, follow Butterick’s advice:

Line height 120 - 145 % of point size

Line length 45 - 90 characters

Body text
Point size
print 10-12 pt
web 15-25 px

gutters

module

margin

Figure 6.1: Basic typographic guidelines
as implemented in examples.

Those best practices do more than aid readability. Experiments have
demonstrated that “high quality typography can improve mood [of
the reader]”4, and the better their mood, the more likely they are to 4 Kevin Larson and Rosalind Picard,

“The Aesthetics of Reading,” MIT
Affective Computing Lab, January 2005,
1–12.

agree with you.
Butterick’s recommendations, and as implemented in the example

memo, are designed functionally. When designing communications
for the interwebs, also consult Web Typography5. There will be occa- 5 Richard Rutter, Web Typography, A

Handbook for Designing Beautiful
and Effective Responsive Typography
(Ampersand Type, 2017).

sions, however, when more creativity can be used in combination
with function. Information graphics are an example. You may find
inspiration in Explorations in Typography6, which studies the creative 6 Carolina de Bartolo, Stephen Coles,

and Erik Spiekermann, Explorations in
Typography, Second (101Editions, 2019).

placement of text.

6.1.2 Grid systems and narrative layout

Another aspect of typography and design rely on grid systems. A
very basic grid is shown in figure 6.1, some of its components drawn
in brown and labeled in gray: gutters, module, and margin. The gut-
ters between the gridlines create white space that separate information
placed into columns, rows, modules, or spatial zones (a spatial zone com-
prises multiple modules or rows or columns). Of course, the grid
lines are not part of the final communication; we create them tem-
porarily to layout and align information. That layout is informed
by visual perception and the way we process information in a given
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culture. When reading English, for example, we generally start pro-
cessing the information from the top, left, our eyes scanning to the
right, and then returning left and down, in a repeating zig-zag pat-
tern. Hebrew is right to left. We call this type of narrtive structure
linear.7 And various graphic design choices can purposefully or inad- 7 Juuso Koponen and Jonatan Hildén,

Data Visualization Handbook, First (Fin-
land: Aalto Art Books, 2019).

vertently guide the reader through the material in other ways. Images,
unlike sentences, create an open narrative structure, allowing us to
reason differently.8 We’ll come back to this concept. 8 Koponen and Hildén, Data Visualiza-

tion Handbook.Grid systems can be much more complex. We are guided by
Muller-Brockmann in his seminal reference, “Arranging surfaces
and spaces into a grid creates conformity among texts, images and
diagrams. The size of each implies its importance. Reducing elements
in a grid suggests planning, intelligibility, clarity, and orderliness of
design. One grid allows many creative ways to show relationships.”9 9 Josef Müller-Brockmann, Grid Systems

in Graphic Design, A Visual Communi-
cation Manual for Graphic Designers,
Typographers, and Three Dimensional
Designers (ARTHUR NIGGLI LTD.,
1996).

A grid with 8 rows by 4 columns and gutter spacing between the
blocks, for example, can lead to numerous arrangements of disparate,
but related, information:

Yet the commonly aligned sides of word blocks, images, and data
graphics can help connect related information. By connect, we mean
the layout creates or enables a path that the audience’s eye follows, a
scan path. In this paragraph of text, you started reading at its begin-
ning and followed horizontally until the end of the line, then scanned
to the left beginning of the line below and repeated the process. In
strip comics, the sequentially arranged images encourage a similar
linear narrative. But other layouts enable an open narrative. These in-
clude radial layouts in which the order we scan relies on focal points,
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which are prominent components due to, say, their size or color in
relation to the surrounding information. Of note, in some circum-
stances we my intend a serial narrative within an open narrative.
Consider labeling or numbering the features , using gestault princi-
ples, or both, to guide the audience.

Thus, as Muller-Brockmann explained, grids enable orderliness,
adds credibility to the information, and induces confidence. Informa-
tion presented with clear and logically set out titles, subtitles, texts,
illustrations and captions will not only be read more quickly and
easily but the information will also be better understood.

Exercise 6.1 (Identify grids for text). Try to identify placement of the
(invisible) grid lines used to align information in the Dodgers proposal,
end of Chapter 5, which is primarily text.

Exercise 6.2 (Identify grids for graphics). Consider the poster version
of the information graphic The Top 2000 loves the 70s & 80s.10 Try to 10 Nadieh Bremer, “The Top

2000 Loves the 70s & 80s,”
Personal, Visual Cinnamon
(https://www.visualcinnamon.com/portfolio/top2000,
December 2016).

identify placement of the (invisible) grid lines used for alignment.

6.2 Combined meaning of words and images

Words, graphics, and images — when combined — can provide
to some extent what Doumont prescribed: effective redundancy. This is
sometimes called dual coding. And to maximize their combination,
we first consider that we process languages and images differently.11 11 Colin Ware, Information Visualization:

Perception for Design, Fourth (Philadel-
phia: Elsevier, Inc, 2020).

Words are read, and processed in linear fashion, serially, one after the
other. Images, on the other hand, can be processed or understood as
a whole, in parallel.

Secondly, each type of medium conveys meaning differently; nei-
ther exactly overlap: a description of an image never actually represents
the image. Rather, . . . it is a representation of thinking about having seen
a picture — it’s already formulated in its own terms.12 Each is better at 12 Nick Sousanis, Unflattening (Cam-

bridge, Massachusetts: Harvard Univer-
sity Press, 2015); paraphrasing Michael
Baxandall, Patterns of Intention: On the
Historical Explanation of Pictures (New
Haven: Yale University Press, 1985).

conveying certain types of messages. Sousanis puts it: “while image
is, text is always about.” Text is usually better for expressing abstract
concepts, and procedure, such as logic or programming. Diagrams
help when explaining structural relationships.

We can benefit from various studies into the interplay of words
and images are found in comics,13, and extrapolate those concepts 13 Neil Cohn, The Visual Narrative Reader,

ed. Neil Cohn (Bloomsbury Academic,
2016); Sousanis, Unflattening; Scott
McCloud, Understanding Comics: The
Invisible Art (Kitchen Sink Press, 1993).

into information visualization. Done right, each informs and enriches
the other.

Images and graphics also enable a unique form of comparison,
juxtaposing one image or encoding to another — or to the absence of
another — to form meaning.
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6.3 Visually integrating graphics and text

Figure 6.2: Edward Tufte has been
hailed ”The Leonardo da Vinci of
data” by the New York Times. He is
professor emeritus of Political Science,
Statistics, and Computer Science at Yale
University. His publications include
four seminal textbooks in information
design.

Good design and typography also enable visual connections be-
tween words and sentences to, say, data graphics. Tufte14 explains,

14 Edward R. Tufte, The Visual Display
of Quantitative Information, Second
(Graphics Press, 2001).

at their best, graphics are instruments for reasoning about quantita-
tive information. Often the most effective way to describe, explore,
and summarize a set of numbers—even a very large set—is to look at
pictures of those numbers. Furthermore, of all methods for analyzing
and communicating statistical information, well-designed data graph-
ics are usually the simplest and at the same time the most powerful.
And if “a means of persuasion is a sort of demonstration,” and we
now agree with Aristotle that it is, then graphics are frequently the
most effective way to demonstrate things, especially for understand-
ing patterns and comparisons.

But it isn’t a Hobson’s choice, words or graphics. Instead, we should
use both. Tufte explains how they work together: “The principle of
data/text integration is: data graphics are paragraphs about data and
should be treated as such.”

Visual displays may be integrated directly within the text. Tufte’s
book is a living example, and explains the approach:

We were able to integrate graphics right into the text, sometimes into
the middle of a sentence, eliminating the usual separation of text and
image — one of the ideas Visual Display advocated.

Experiments support Tufte’s advice. The Data Visualization Hand-
book summarizes an experiment of eye-tracking movements and
comprehension when reading communications in various layouts15, 15 Jana Holsanova, Henrik Rahm, and

Kenneth Holmqvist, “Entry Points and
Reading Paths on Newspaper Spreads:
Comparing a Semiotic Analysis with
Eye-Tracking Measurements,” Visual
Communication 5, no. 1 (February 2006):
65–93.

we learned that layouts that integrate images within text columns
improve communication over both radial layouts and layouts that
separte text from images. The integrated approach promoted careful
reading of the text between images while layouts separating text from
images promoted the reading of a title, skipping the body text, and
focusing on the images. Radial layouts were reviewed more quickly
than linear, integrated text-image layouts, and less information was
retained.

For effective integration, visual display need only be large enough
to clearly convey the information as intended for our audience in the
manner to be consumed. To make the point, consider the word-sized
graphics Tufte16 calls sparklines: . Also note that when the 16 Tufte, Beautiful Evidence.

graphic is large enough to include annotation,

The principle of text/graphic/table integration also suggests that the
same typeface be used for text and graphic and, further, that ruled
lines separating different types of information be avoided.
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Exercise 6.3 (Identify exemplary data graphic paragraph). Locate two
or three narratives with data graphics as paragraphs that you believe
the graphic helped persuade audiences of the point of the narrative.
Explain why the graphic explained better than words as used.

6.3.1 Annotating data graphics with words

Annotations add explanations and descriptions to introduce the
graph’s context, which is important for almost any audience. Anno-
tation plays a crucial role in asynchronous data storytelling as the
surrogate for the storyteller. They can also explain how to read the
graph, which helps readers unfamiliar with the graph — whether a
simple line chart or an advanced technique like a treemap or scatter-
plot. When done right, the annotation layer will not get in the way
for experienced users. Consider, for example, figure 6.3.
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Oakland and Stockton have among California’s worst violent crime 
rates, as shown in the large circles, but reported improvements 
between 2012 and 2013.

Increases in violent crime, 
but property crime decreases
Huntington Beach’s increased violent crime rate 
was worsened largely by a jump in robberies, 83 
in 2012, which grew to 100 a year later.

More violent and property crime
San Francisco saw jumps in the rate of every crime 
category, except murder, between 2012 and 2013. 
Theft of personal property rose by 27% and rapes 
by 47%.

Increases in property crime, 
but violent crime decreases
Glendale, Salinas and Oceanside reported 
increases in property crime, defined as burglary 
and theft of property.

Figure 6.3: Example of data graphic
containing annotation to assist the
audience.

From a cognitive perspective, Ware writes that “plac[ing] explana-
tory text as close as possible to the related parts of a diagram, and
us[ing] a graphical linking method” will “reduce [the] need to store
information temporarily while switching back and forth between lo-
cations.”17 This example, published in a newspaper article18, displays 17 Ware, Information Visualization.

18 Jon Schleuss and Rong-Cong Lin II,
“California Crime 2013,” Los Angeles
Times, 2013.

a scatter plot that encodes the rate change of crime on the x-axis,
change of property crime on the y-axis, and rate of crimes as size
of the location or point. Note the plot is segmented into quadrants,
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color-coded to indicate better and worse conditions, and annotations
are overlain that explain how to interpret the meaning of a data point
located within quadrants of the graphic. The various annotations
greatly assist its general audience in decoding the data and consider-
ing insights.

6.3.2 Visually linking words with graphics

Placement of data graphics within words and annotating graphics
with words are the first step in integrating the information. Another
best practice includes using color encodings and other explicit mark-
ings, linking words to encodings, such as adding lines connecting
related information19: 19 Riche et al., Data-Driven Storytelling.

The link between the narrative and the visualization helps the reader
discern what item in the visualization the author is referencing in the
text. Create links with annotation, color, luminosity, or lines.

For example, color words in annotations on a data graphic and in
the paragraphs surrounding that graphic with the same hue as used
in the data encodings of the graphic. Academic Matthew Kay20 pro- 20 Matthew Kay, “Figures”

(www.mjskay.com/figures/, August
2015).

vides example uses of color for linking words to data encodings.
We find another great example of linking paragraphs with illustra-

tions in Byrne’s revision of Euclid’s first six books.21 21 Oliver Byrne, The first six books of
the elements of Euclid in which coloured
diagrams and symbols are used instead of
letters for the greater ease of learners, Bib-
liotheca universalis (Köln: TASCHEN,
2017).

6.3.3 Linking multiple graphics

If individual graphs reveal information and structure from the data,
an ensemble of graphs can multiply the effect. By ensemble, we mean
multiple graphs simultaneously displayed, each containing different
views of the data with common information linked together by vari-
ous techniques. And while William Cleveland22 describes “brushing 22 William S Cleveland, The Elements of

Graphing Data (Wadsworth, 1985).and linking” — where items selected in on one visual display high-
lights the same subset of observations in another visual display — as
an interactive tool, he effectively shows the technique by highlighting
the same data across static displays. Another author23 provides a nice 23 Antony Unwin and Pedro Valero-

Mora, “Ensemble Graphics,” Journal of
Computational and Graphical Statistics 27,
no. 1 (December 2018): 157–65.

example, walking through use of ensembles in exploring data quality,
comparing models, and presenting results. As the authors explain,

Coherence in effective ensembles covers many different aspects: a
coherent theme, a coherent look, consistent scales, formatting, and
alignment. Coherence facilitates understanding.

The additional effort for coherence “are more design than statistics,
but they are driven by the statistical information to be conveyed,
and it is therefore essential that statisticians concern themselves with
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them.” Along with using the same theme styles, their choice of place-
ment is informed by best practices in graphic design, which apply a
grid system, already discussed.
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Visual design and perception

7.1 Why review data graphically?

The value of data graphics can be grasp from a brief analysis
of the following four datasets (1-4) of (x, y) data in table 7.1 from a
famous data set:

1 2 3 4

x y x y x y x y

10 8.04 10 9.14 10 7.46 8 6.58

8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71

9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47

14 9.96 14 8.10 14 8.84 8 7.04

6 7.24 6 6.13 6 6.08 8 5.25

4 4.26 4 3.10 4 5.39 19 12.50

12 10.84 12 9.13 12 8.15 8 5.56

7 4.82 7 7.26 7 6.42 8 7.91

5 5.68 5 4.74 5 5.73 8 6.89

Table 7.1: These four simple datasets
are known as Anscombe’s Quartet.

For most of us, reviewing the table for comparing the four datasets1 1 F J Anscombe, “Graphs in Statistical
Analysis,” The American Statistician 27,
no. 1 (February 1973): 17–21.

is cognitively taxing, and especially when scanning for differences in
the relationships between x and y across datasets. Processing the
data this way occurs sequentially; we review data pairs with focused
attention. And, here, summary statistics do not differentiate the
datasets. All x variables share the same mean and standard deviation
(table 7.2). So do all y variables.

1 2 3 4

x y x y x y x y

mean 9.00 7.50 9.00 7.50 9.00 7.50 9.00 7.50

sd 3.32 2.03 3.32 2.03 3.32 2.03 3.32 2.03

Table 7.2: The mean and standard
deviation per dataset are identical.

Further, the linear regression on each dataset (table 7.3) suggests
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that the (x, y) relationship across datasets are the same. Are they?

Parameter Mean Std Err t-val p-val

Dataset 1
(Intercept) 3.000 1.125 2.667 0.026

x 0.500 0.118 4.241 0.002

Dataset 2
(Intercept) 3.001 1.125 2.667 0.026

x 0.500 0.118 4.239 0.002

Dataset 3
(Intercept) 3.002 1.124 2.670 0.026

x 0.500 0.118 4.239 0.002

Dataset 4
(Intercept) 3.002 1.124 2.671 0.026

x 0.500 0.118 4.243 0.002

Table 7.3: Linear regression coefficients
across datasets are practically identical.

A well-crafted visual display, however, can instantly illuminate any
differing (x, y) relationships among the datasets. To demonstrate,
we arrange four scatterplots in figure 7.1 showing the relationships
between (x,y), one for each dataset. Overlain on each, we show the
linear regression calculated above.
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Figure 7.1: The differing (x, y) relation-
ships among datasets in Anscombe’s
Quartet become instantly clear when
visualized.

As the example shows, exploratory data analysis using visual and
spatial representations add understanding. It allows us to find pat-
terns in data, detecting or recognizing the geometry that encodes the
values, assembling or grouping these detected elements, and estimating
the relative differences between two or more quantities.2 In estimat- 2 Cleveland, The Elements of Graphing

Data; William S Cleveland, Visualizing
Data (Hobart Press, 1993).

ing, we first discriminate between data: we judge whether a is equal
to b. Then we rank the values, judging whether a is greater than, less
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than, or equal to b. Finally, we consider the ratio between them us-
ing encoded geometries (e.g., relative distance from a common line).
Unlike with sequential processing required for table lookups, pattern
recognition — and outliers from those patterns — seem to occur in
parallel, quickly because we are attuned to preattentive attributes.3 3 Ware, Information Visualization.

7.2 Reasoning with images

We previously mentioned how, unlike processing text in linear fash-
ion, images enable an open narrative, which we process differently.4 4 Koponen and Hildén, Data Visualiza-

tion Handbook; Sousanis, Unflattening;
Stephen Michael Kosslyn, William L.
Thompson, and Giorgio Ganis, The Case
for Mental Imagery, Oxford Psychology
Series 39 (New York: Oxford Univer-
sity Press, 2006); Baxandall, Patterns of
Intention.

We may also combine linear and open narrative structures in vari-
ous ways.5

5 E Segel and J Heer, “Narrative Visu-
alization: Telling Stories with Data,”
IEEE Transactions on Visualization and
Computer Graphics 16, no. 6 (November
2010): 1139–48.

. . .

7.3 Components of a graphic

Graphics include a coordinate system, arranged spatially, and
have numerous attributes that we may make visible in some way,
if it helps users understand the graphic. These components can be
understood in two categories. Those encoding data (data-ink) and all
the rest (non-data-ink).

7.3.1 Non-data-ink

We’ll use an R/ggplot implementation of graphics to discuss these
components6. Figure 7.2 shows the names for most of the non-data- 6 Other implementations of graphics

will typically name the components of a
graphic similarly.

ink components of a visual display.

Most of the aesthetics of each labeled component can be set, mod-
ified, or removed using the ggplot function theme(), which takes
plot components as parameters. We set parameters equal to other
formatting functions like, say, element_text() for formatting its
typography, element_rect() for formatting its various shape or
coloring information, or element_blank() to remove entirely the el-
ement. In Figure 7.2, for example, we set the panel border attribute
linetype and color using theme(panel.border = element_rect(color

= "gray60", linetype = "dashed", fill = NA)). We can use the
ggplot function annotate() to include words or draw directly onto
the plotting area. Figure 7.3 shows the basic code structure.

In the pseudocode of figure 7.3, we map variables in the data
to aesthetic characteristics of a plot that we see through mapping

= aes(<aesthetic> = <variable>)7. Particular aethetics depend 7 Note that <...> is not part of the
actual code. It represents, for purposes
of discussion, a placeholder that the
coder would replace with appropriate
information.

on the type of geometric encoding we choose. A scatter plot, say,
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axis.text.y

axis.text.x axis.text.x axis.text.x axis.text.x axis.text.x
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y

Subtitle in sentence case.

Title of the Chart
can be Multiple Lines.

Caption text can be used for notes
or, say, describing the data source.

panel.border panel.grid.major

panel.grid.minor

axis.line.x

axis.title.y

title

subtitle

caption

plot.border

axis.ticks.y

panel.backgroundplot.background

plot.margin

{

Annotations, such as this one, may
be placed anywhere on the panel surface.
Just provide the label text and coordinates.

annotate

Figure 7.2: Edward Tufte advocates
maximizing the data-ink ratio within
reason. Some non-data-ink can be
critical to understanding the data. For
each element’s marking, coloring, size,
shape, orientation, or transparency
setting, ask whether it maximizes
our audience’s understanding of the
intended insight.

Figure 7.3: GGplot’s functions are set
up as layers. We may use more than
one geometry or annotation.
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would at least include x and y aesthetics. The geometric encod-
ings are created through functions named for their geometries:
e.g., geom_point(<...>) for the scatter plot, which we general-
ize to geom_<type>(<...>). The geometry is then mapped onto a
particular coordinate system and scale: coord_<type>(<...>) and
scale_<mapping>_<type>(<...>), respectively. Finally, we annotate
and label the graph. These can be thought as layers that are added (+)
over each previous layer.

The remaining markings of a graphic are the data-ink, the data
encodings, discussed next.

7.3.2 Data-ink

Encodings depend on data type, which we introduced in section
2.3.1. As Andrews8 explains, “value types define how data is stored 8 Andrews, Info We Trust.

and impact the ways we turn numbers into information.” To recap,
these types are either qualitative (nominal or ordered) or quantitative
(interval or ratio scale).

“A component is qualitative” and nominal, Bertin explains, “when
its categories are not ordered in a universal manner. As a result, they
can be reordered arbitrarily, for purposes of information process-
ing.”9 The qualitative categories are equidistant, of equal importance. 9 Jacques Bertin, Semiology of Graphics:

Diagrams Networks Maps (Redlands:
ESRI Press, 2010).

Considering Citi Bike, labeled things such bikes and docking stations
are qualitative at the nominal level.

Figure 7.4: Jacques Bertin was a French
cartographer and theorist, trained at
the Sorbonne, and a world renowned
authority on the subject of information
visualization. He later assumed various
leadership positions in research and
academic institutions in Paris. Semiology
of Graphics, originally published in
French in 1967, is internationally
recognized as a foundational work in
the fields of design and cartography.

“A component is ordered, and only ordered, when its categories
are ordered in a single and universal manner” and “when its cat-
egories are defined as equidistant.” Ordered categories cannot be
reordered. The bases in baseball are ordinal, or ordered: first, sec-
ond, third, and home. Examples of qualitative ordering may be, say,
temporal: morning, noon, night; one comes before the other, but we
would not conceptually combine morning and night into a group of
units.

When we have countable units on the interval level, the data of
these counts are quantitative. A series of numbers is quantitative
when its object is to specify the variation in distance among the cat-
egories. We represent these numerically as integers. The number of
bike rides are countable units. The number of stolen bases in baseball
are countable units. We represent these as integers.

Finally, ratio-level, quantitative values represent countable units
per countable units of something else. The number of bike rides
per minute and the number of strike outs per batter would be two
examples, represented as fractions, real numbers.

The first and most influential structural theory of statistical graph-
ics is found the seminal reference, Semiology of Graphics10. 10 Jacques Bertin, Semiology of Graphics

(University of Wisconsin Press, 1983).
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Based on Bertin’s practical experience as a cartographer, part one
of this work is an unprecedented attempt to synthesize principles of
graphic communication with the logic of standard rules applied to
writing and topography.

Part two brings Bertin’s theory to life, presenting a close study
of graphic techniques, including shape, orientation, color, texture,
volume, and size, in an array of more than 1,000 maps and diagrams.
Here are those encoding types:

Figure 7.5: Bertin’s illustration of the
possible encoding forms for data.

Less commonly discussed is Bertin’s update11 to his original work. 11 Bertin, Semiology of Graphics.

In the update, after defining terms he reviews the natural properties
of a graphic image. The essence of the graphic image is described
in three dimensions. The first two describe spatial properties (e.g. x
and y axes) while the third dimension (denoted z) encodes the char-
acteristics of each mark — e.g. size, value, texture, color, orientation,
shape — at their particular spatial (x, y) locations.

Bertin’s ideas, over 50-years old, have proven reliable and robust.12 12 Alan M. MacEachren,
“(Re)Considering Bertin in the Age
of Big Data and Visual Analytics,”
Cartography and Geographic Informa-
tion Science 46, no. 2 (March 2019):
101–18, https://doi.org/10.1080/
15230406.2018.1507758; ???

7.3.3 Grammar

Graphics are not charts, explains Wilkinson13:

13 Leland Wilkinson, The Grammar of
Graphics, Second (Springer, 2005).

We often call graphics charts. There are pie charts, bar charts, line
charts, and so on. [We should] shun chart typologies. Charts are usu-
ally instances of much more general objects. Once we understand
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that a pie is a divided bar in polar coordinates, we can construct other
polar graphics that are less well known. We will also come to realize
why a histogram is not a bar chart and why many other graphics that
look similar nevertheless have different grammars. . . . Elegant design
requires us to think about a theory of graphics, not charts.

We should think of chart names only as a shorthand for what they
do. To broaden our ability to represent comparisons and insights
into data, we should instead consider their representation as types
of measurement: length along a common baseline, for example, or
encoding data as color to create Gestalt groupings.

In Leland Wilkinson’s influential work, he develops a grammar of
graphics. That grammar respects a fundamental limitation, a differ-
ence from pictures and other visual arts:

We have only a few rules and tools. We cannot change the location of
a point or the color of an object (assuming these are data-representing
attributes) without lying about our data and violating the purpose of
the statistical graphic — to represent data accurately and appropriately.

Leland categorizes his grammar:

Algebra comprises the operations that allow us to combine variables
and specify dimensions of graphs. Scales involves the representation of
variables on measured dimensions. Statistics covers the functions that
allow graphs to change their appearance and representation schemes.
Geometry covers the creation of geometric graphs from variables.
Coordinates covers coordinate systems, from polar coordinates to
more complex map projections and general transformations. Finally,
Aesthetics covers the sensory attributes used to rep- resent graphics.

He discusses these components of graphics grammar in the con-
text of data and its extraction into variables. He also extends the
discussion with facets and guides.

How do we perceive data encoded in this grammar?

7.4 Perceptions of visual data encodings

We assemble mental models of grouping through differences in
similarity, proximity, enclosure, size, color, shading, and hue, to name
a few. In figure 7.1, for example, we recognize dataset three as having
a grouped linear relationship with one outlier based on proximity.
Using shading, for example, we can separate groups of data. In the
left panel of figure 7.6, we naturally see two groups, one gray, and the
other black, which has an outlier. We could even enclose the outlier
to further call attention to it, as shown on the right panel.
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Figure 7.6: We can use preattentive
attributes to separate data categorically
and call attention to particular aspects
of that data.

Several authors14 provide in-depth reviews of these ideas. We can, 14 Ware, Information Visualization; Bertin,
Semiology of Graphics; Isabel Meirelles,
Design for Information, An Introduction
to the Histories, Theories, and Best
Practices Behind Effective Information
Visualizations (Rockport, 2013); C G
Healey and J T Enns, “Attention and
Visual Memory in Visualization and
Computer Graphics,” IEEE Transactions
on Visualization and Computer Graphics
18, no. 7 (May 2012): 1170–88.

and should, use these ideas to assist us in understanding and com-
municating data through graphical displays.

Graphical interpretation, however, comes with its own limita-
tions. Our accuracy in estimating the quantities represented in visual
encoding depends on the geometries used for encoding. In other
words, it can be easy for us, and less familiar readers, to misinter-
pret a graph. Consider the example in Figure 7.7 where the slope of
the trend changes rapidly. Considering the left panel alone, it may
seem deviations from the fitted line decrease as x increases. But the
residuals encoded in the right panel show no difference.
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Figure 7.7: Without careful inspection,
it may seem that deviations from the
fitted line decrease as x increases. The
plot of residuals, however, shows the
reverse is true.
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The misperception arises if we mistakenly compare the minimal
distance from each point to the fitted line instead of comparing the
vertical distance to the fitted line. Cleveland15 has thoroughly re- 15 Cleveland, The Elements of Graphing

Data.viewed our perceptions when decoding quantities in two or more
curves, color encoding (hues, saturations, and lightnesses for both
categorical and quantitative variables), texture symbols, use of visual
reference grids, correlation between two variables, and position along
a common scale. Empirical studies16 have quantified our accuracy 16 William S Cleveland and Robert

McGill, “Graphical Perception: Theory,
Experimentation, and Application to
the Development of Graphical Meth-
ods,” Journal of the American Statistical
Association 79, no. 387 (September
1984): 531–54; Jeffrey Heer and Michael
Bostock, “Crowdsourcing Graphical
Perception: Using Mechanical Turk
to Assess Visualization Design,” in
Proceedings of the Sigchi Conference on
Human Factors in Computing Systems,
2010, 203–12.

and uncertainty when judging quantity in a variety of encodings.
The broader point is to become aware of issues in perception and

consider multiple representations to overcome them. Several refer-
ences mentioned in the literature review delve into visual perception
and best practices for choosing appropriate visualizations. The Data
Visualization Handbook17, for example, usefully arranges data types

17 Koponen and Hildén, Data Visualiza-
tion Handbook.

within visual variables and orders them by our accuracy in decoding,
shown in figure 7.8:
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Figure 7.8: Visual variables, organized
by how well they are suited for repre-
senting data measured on each type of
scale.

Placing encodings in the context of chart types, figure 7.9, we
decode them from more to less accurate, position encoding along
common scales (e.g., bar charts, scatter plots), length encodings (e.g.,
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stacked bars), angles (e.g., pie charts), circular areas (e.g., bubble
charts), luminance, and color18: 18 Tamara Munzner, Visualization Analy-

sis and Design (CRC Press, 2014).

Position common scale Length Angle Area Luminance Color

Figure 7.9: We gage position along a
common scale more accurately than
length, which we gauge more accu-
rately than angle or area. Luminance or
color are typically reserved for encod-
ing quantities in a third dimension.

A thorough visual analysis may require multiple graphical rep-
resentations of the data, and each require inspection to be sure our
interpretation is correct.

7.4.1 Color

As mentioned, We can encode data using color spaces, which are
mathematical models. The common color model RGB has three di-
mensions — red, green, and blue, each having a value between 0 and
255 (28) — where those hues are mixed to produce a specific color.

Figure 7.10: The RGB colorspace repre-
sented in three dimensions, with values
from 0-255. Of note, the curious value
of 255 originates from when comput-
ers, which store in formation in bits.
28 = 256 values, starting at 0.

Notice the hue, chroma, and luminance of this colorspace, figure 7.11,
seems to have uneven distances and brightness along wavelength.
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Figure 7.11: The RGB colorspace repre-
sented as hue, chroma, and luminance.
The uneven distances in wavelength
between hues creates misperceptions in
data encodings in this color space.

Let’s consider how we might, as illustrated in figure 7.12, map data
to these characteristics of color.

Figure 7.12: How can we map data to
light, whether using its hue, chroma, or
luminance?

Luminance is the measured amount of light coming from some
region of space. Brightness is the perceived amount of light coming
from that region of space. Perceived brightness is a very nonlinear
function of the amount of light emitted. That function follows the
power law:

perceived brightness = luminancen (7.1)

where the value of n depends on the size of the patch of light. Colin
Ware19 reports that, for circular patches of light subtending 5 degrees 19 Ware, Information Visualization.

of visual angle, n is 0.333, whereas for point sources of light n is
close to 0.5. Let’s think about this graphically. Visual perception
of an arithmetical progression depends upon a physical geometric
progression.20 In a simplification shown in figure 7.13, this means: if 20 Josef Albers, Interaction of Color (Yale

University Press, 2006).the first 2 steps measure 1 and 2 units in rise, then step 3 is not only
1 unit more (that, is, 3 in an arithmetical proportion), but is twice as
much (that is, 4 in a geometric proportion. The successive steps then
measure 8, 16, 32, 64 units.

Color intervals are the distance in light intensity between one color
and another, analogous to musical intervals (the relationship between
notes of different pitches).
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Figure 7.13: As Albers illustrates, We-
ber’s law, applied to creating color
steps we perceive as evenly spaced re-
quires we convert from an arithmetical
progress to a geometric progression.

Uneven wavelengths between what we perceive as colors, as we
saw in the RGB color space, results in, for example, almost identical
hues of green across a range of its values while our perception of
blues change more rapidly across the same change in values. We also
perceive a lot of variation in the lightness of the colors here, with the
cyan colors in the middle looking brighter than the blue colors.

Figure 7.14: As with luminance, hue
values in the RGB color space fail to
uniformly scale across values.

Other color spaces show changes in color we perceive as uniform.
Humans compute color signals from our retina cones via an oppo-
nent process model, which makes it impossible to see reddish-green
or yellowish-blue colors. The International Commission on Illumi-
nation (CIE) studied human perception and re-mapped color into
a space where we perceive color changes uniformly. Their CIELuv
color model has two dimensions — u and v — that represent color
scales from red to green and yellow to blue.

More modern color spaces improve upon CIELuv by mapping colors
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Figure 7.15: CIELuv color model has
two dimensions — u and v — that
represent color scales from red to green
and yellow to blue.

as perceived into the familiar and intuitive Hue-Chroma-Luminance
dimensions. Several modern color spaces, along with modification to
accommodate colorblindness, are explained in the expansive Data Vi-
sualization Handbook21. In contrast with the perceptual change shown 21 Koponen and Hildén, Data Visualiza-

tion Handbook.with an RGB colorspace of figure 7.14, the change in value shown in
figure 7.16 our green-to-blue hues in 10 equal steps using the HCL
model are now perceptually uniform.

Figure 7.16: In a perceptually uniform
colorspace creates an even gradient.

With categorical data, we do not want one color value to appear
brighter than another. Instead, we want to choose colors that both
separate categories while holding their brightness level equal (7.17).
For an implementation of perceptually uniform color spaces in R,
review the package colorspace.

Figure 7.17: Perceptually uniform
color spaces also help in distinguishing
categorical data.
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7.4.2 Relativity of color

Notice, by the way, that each of the 10 values shown in figure 7.16

appear to show a gradient in hue. That isn’t the case, the hue is uni-
form. Our eyes, however, perceive a gradient because the adjacent
values create an edge contrast. Humans have evolved to see edge
contrasts, as in figure 7.18.

Figure 7.18: We see comparative — not
absolute — luminance value. Adjacent
data encoded by color may cause us to
misperceive the value we’re inspecting.

We see comparative — not absolute — luminance value. The edge
between the left and right gray rectangles, created by a luminance
adjustment tricks us into seeing each rectangle as uniform, though
the outer portions have the same luminance. Need proof? Cover the
edge portion between them.

Similarly, our comparative perception has implications for how to
accurately represent data using luminance. Background or adjacent
luminance — or hue or saturation — can influence how our audience
perceives our data’s encoded luminance value. The small rectangles
in the top row all have the same luminance, though they appear to
change. This misperception is due to the background gradient.

Exercise 7.1 (Identify graphics data-ink encodings.). Locate two or
three graphics on the internet, each with different types of data-ink
encodings you believe are well-designed. Be adventurous. Describe
those encodings without using names of charts.

Now locate two graphics, each with different types of data-ink
encodings you believe are problematic. Describe the encodings, what
makes them problematic, and suggest a more appropriate encoding.

7.5 Maximize information in visual displays

Maximize the information in visual displays within reason.
Tufte22 measures this as the data-ink ratio: 22 Edward R. Tufte, “Data-Ink Maxi-

mization and Graphical Design,” in The
Visual Display of Quantitative Information
(Graphics Press, 2001), 1–15.
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Figure 7.19: Background information
causes us to misperceive that each row
of small rectangles are encoded with
identical luminance values.

data-ink ratio =
data-ink

total ink used to print the graphic

= proportion of a graphic’s ink devoted to the

non-redundant display of data-information

= 1.0− proportion of a graphic that can be

erased without loss of data-information

(7.2)

That means identifying and removing non-data ink. And identify-
ing and removing redundant data-ink. Both within reason. Just how
much requires experimentation, which is arguably the most valuable
lesson23 from Tufte’s classic book, The Visual Display of Quantitative 23 Indeed, most criticisms of Tufte’s

work misses the point by focusing
on the most extreme cases of graphic
representation within his process of
experimentation, completely losing
what we should learn — how to reason
and experiment with data graphics.
Focus on learning the reasoning and
experimentation process.

Information. In it, he systematically redesigns a series of graphics,
at each step considering what helps and what may not. Tufte, of
course, offers his own view of which versions are an improvement.
His views are that of a designer and statistician, based on his experi-
ence and theory of graphic design.

Some of his approaches have also been subject to experiments24,
24 E. W. Anderson et al., “A User Study
of Visualization Effectiveness Using
EEG and Cognitive Load,” Computer
Graphics Forum 30, no. 3 (June 2011):
791–800, https://doi.org/10.1111/
j.1467-8659.2011.01928.x.

which we should consider within the context and limitations of those
experiments. More generally, for any important data graphic for
which we do not have reliable information on its interpretability,
we should perform tests on those with a similar background to our
intended audiences.

Let’s reconsider the example figure from Knaflic:
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Figure 7.20: Knaflic systematically
changes a graphic, beginning with the
original, default graph on the left, and
finishing with the graphic on the right.Exercise 7.2 (Identify non- and redundant-data ink removed.). Com-

pare Knaflic’s before-and-after example. Try to articulate all differ-
ences. Consider whether her changes follow Tufte’s principles, and
whether each of her changes would improve her audience’s under-
standing of the intended narrative and supporting evidence.
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Visually encoding data, common and xenographic

8.1 Encoding data-ink, common graphics

Resources abound for encoding and coding common graphics. In
an award-winning graphic form1 we find taxonomies for common 1 Yan Holtz and Conor Healy, “From

Data to Viz,” 2018.graphics, and an analysis of basic charts. Available elsewhere2. Again
2 Kieran Healy, Data Visualization
(Princeton University Press, 2018);
Knaflic, Storytelling with Data; Cleve-
land, Visualizing Data; Cleveland, The
Elements of Graphing Data.

consulting the Data Visualization Handbook will explain common sta-
tistical graphics, including bar charts, dot plots, line charts and their
variants, like slopegraphs, streamgraphs, bumps charts, cycle plots,
sparklines, pie and donut charts, scatterplots (scatter or x-y, strip
plot, beeswarm plot), bubble charts, heatmaps, box plots, violin plots,
and many more. We should not try to memorize each type. Instead,
we should understand how they work using the language and ideas
from section 7.4. Apply the the advice about studying metaphor and
rhetorical figures (section 5.6) when constructing graphics, too:

Seeing just a few examples invites direct imitation of them, which
tends to be clumsy. Immersion in many examples allows them to do
their work by way of a subtler process of influence, with a gentler and
happier effect on the resulting style.

And we have already used many common graphics in previous
chapters. We encountered bar charts (e.g., figures 5.7 and 7.9), and
other instances of graphics in their natural environments, like his-
tograms (e.g., figure 3.1), which are very similar to bar charts, scatter-
plots (e.g., figures 3.2, 3.9), linecharts (e.g., figure 3.3), ribbon charts
(e.g., figure 3.45). The rootogram, which we’ve seen several times
(e.g., figure 3.6) is merely a line and ribbon chart overlain onto a
histogram. We’ve seen density plots, which appear as a line chart,
except the line represents the density of values on the y-axis, given
the value on the x-axis (e.g., figure 3.5). We’ve even used a so-called
parallel coordinates plot, (e.g., figure 3.27), which uses a line chart en-
coding where the x-axis represents categories, instead of a continuous
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quantity. We have even seen a more stylized form of a boxplot3 (with 3 Boxplots were introduced by Tukey,
and explained in John W Tukey, Ex-
ploratory Data Analysis (Addison-Wesley,
1977); Tukey’s boxplot was dissected
in Tufte, “Data-Ink Maximization and
Graphical Design” as an exercise to
maximize the data-ink using alternate
encodings.

dots of observed values overlain), which we referred to simply as an
uncertainty interval (e.g., figure 3.16).

These types of charts, and those similar, are common because they
effectvely encode quantities measured from a common base line (the
x or y axis, or both), which, as we have learned, is generally less error
prone in decoding values, see section 7.4. Our particular implemen-
tations have also generally tried to maximize the data-ink ratio. Even
their sizes have been reduced to just large enough to consider the
patterns they reveal. In some cases, however, common encodings are
not optimal. Instead, an encoding more unique will better inform our
audiences. These, we may categorically call xenographics.

Of note, the difference between common graphics and what has
been called xenographics is somewhat arbitrary. The more impor-
tant point is not the name we use — chart names are just short-hand
to convey instances of graphics — but that we anticipate what en-
codings our audience already understands how to decode and what
encodings our audience needs explaination on how to decode.

8.2 Graphics, layers and separation

When designing graphics, and especially when comparing en-
codings or annotating them, we must visually layer and separate
types of information or encodings. As Tufte4 explains, “visually strat- 4 Edward R. Tufte, “Layers and Sep-

aration,” in Envisioning Information
(Graphics Press, 1990).

ifying various aspects of the data.” By layering or stratifying, we
mean placing one type of information over the top of a second type
of information. The grammar of graphics, discussed earlier, accom-
plishes such a layering. To visually separate the layered information,
we can assign, say, a hue or luminance, for a particular layer. Many
of the graphics of chapter 3 separate types of data through layer-
ing. Figure 3.5, for example, includes two data types: observed and
simulated data. Two hundred simulations of data are placed in the
background by adding it to the graphic before the observed value,
and by using a light color to contrast with the dark color of the ob-
served data encoding.

These design choices may also create a sense of near and far.5 We 5 Timothy Samara, Design Elements: A
Graphic Style Manual, Understanding
the Rules and Knowing When to Break
Them (Rockport, 2014).

may create a sense of depth, of foreground and background, using
any of size, overlapping the forms or encodings, the encodings rel-
ative values (lightness, opacity). “The seeming nearness or distance
of each form will also contribute to the viewer’s sense of its impor-
tance and, therefore, its meaning relative to other forms presented
within the same space.” Ultimately we are trying to achieve a visual
hierarchy for the audience to understand at each level.
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8.3 Encoding data-ink, xenographics

For a growing collection of interesting approaches to visualiz-
ing data in uncommon ways, consult the website Xenographcs6. But 6 Maarten Lambrechts, “Xenographics:

Weird but (Sometimes) Useful Charts,”
Xenographics (https://xeno.graphics,
2020).

we have already seen a few less common data encodings. Recall, for
example, instances of tracking information encoded as dots within
circles in figure 5.4. Let’s consider a couple more. Getting back to our
example Citi Bike project, we identified various data visuals used in
earlier exploratory work.7 In that earlier study, researchers visual- 7 Saldarriaga, “CitiBike Rebalancing

Study.”ized bike and docking station activity data in the form of heatmaps
overlaying maps, and heatmaps as a grid wherein the x-axis encoded
time of day, the y-axis encoded docking station names as categorical
data, hue at a given time and docking station encoded the imbalance
between incoming and outgoing bikes, and luminocity at the same
location encoded activity level, as shown in figure 8.1.

Figure 8.1: Researchers visualized
bike and docking station activity data
in the form of heatmaps overlaying
maps, and heatmaps as a grid wherein
the x-axis encoded time of day, the
y-axis encoded docking station names
as categorical data, hue at a given
time and docking station encoded
the imbalance between incoming and
outgoing bikes, and luminocity at the
same location encoded activity level.
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The more interesting aspect of this graphic is that the dual hue, lumi-
nance encoding enables markings to disappear if either a) incoming
and outgoing activity is balanced or b) the activity level is very low.
The limitations of the overall encoding, however, include an unfa-
miliar listing of docking stations by name on the y-axis. As we pro-
posed in the memo, example 4.1, let’s try encoding these variables
differently. Let’s try addressing the admitted challenge of encoding
geographic location with time in a way that allows further, meaning-
ful encodings. We will do this in stages. First, we consider activity
level, which we naturally think of as a daily pattern. Other graph-
ics8 have explored daily patterns of activity, and encode that activity 8 Zan Armstrong and Nadieh Bremer,

“Why Are so Many Babies Born
Around 8:00 A.M.?” Scientific American,
June 2017; Nadieh Bremer, “The Baby
Spike,” Portfolio, Visual Cinnamon
(https://www.visualcinnamon.com/portfolio/baby-
spike, April 2017) explains how the
graphic was made.

level using polar coordinates. We borrow from that work, encoding
bike activity level the way we think about time — circular, think of a
24-hour clock. Our first graphic is in figure 8.2. We read the graphic
as reflecting activity level over time, which is encoded circular, with
midnight at the top, 6am to the right, noon at the bottom, 18 hours
(6pm) to the left. To help visualize time of day, we label sunrise and
sunset, and shade areas before and after sunrise as dark and light.

More

5 rides
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Figure 8.2: This graphic encodes bike
activity levels throughout a 24-hour
day, where time is encoded as polar
coordinates.

As did Nadieh, we encode an average activity level along the
black line, activity level at a given time as the distance from that
average. And the color within that distance from average activity
level encodes the quantiles (think boxplot) of activity. As with encod-
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ing average activity level, we annotate with reference activity levels:
5, 20, and 35 rides per minute. What is remarkable is the observed
magnitude of change from average (black circle) ride rates that exist
throughout the day, which reflects this rebalancing problem. Min-
utes in only light blue show when 50 percent of the ride rates exist.
Minutes that include dark blue show when the highest (outside black
circle) or lowest (inside black circle) rate of rides happen. Finally,
the remaining minutes with medium blue show when the rest of the
rates of rides occur.

We now address the limitation of the prior work. In this regard,
we can learn from the famous graphic by Minard of Napoleon’s
march, see figure 8.3.

Figure 8.3: Minard’s Napoleon graphic
redrawn and translated into English.

In Minard’s graphic, as Tufte explains, he overlays the path of
Napoleon’s march onto a map in the form of a ribbon.9 While the 9 Tufte, The Visual Display of Quantitative

Information analyses Minard’s graphic,
declaring it, perhaps, the greatest ever
created.

middle of that ribbon may accurately reflect geographic location,
the width of that ribbon does not. Instead, the width of the ribbon
encodes the number of solders at that location, wherein time is also
encoded as coinciding with longitude. That encoding gives a sense
of where the solders were at a given time, while also encoding num-
ber of solders. We try a similar approach with Citi Bike, shown in
figure 8.4. We place each docking station the a black dot (·) overlay-
ing a geographic map of New York City. At each station, we encode
using color an empty or full station as a line segment ( | ) starting
at the station dot and extending towards time of day, the length of a
unit circle. The line segments are partly transparent so that an indi-
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vidual empty or full station won’t stand out, but repeated problems
at that time of day over the three weeks of the data (January 2019)
would be more vivid and noticeable. Finally, we annotate the graphic
with a narrative and a key that explains these encodings, along with
encoding the general activity levels of the graphic in figure 8.2.

Figure 8.4: The visualization — a xeno-
graphic — invites riders to explore
bike and docking station availability
for encouraging re-distribution for
the NYC bike share. The data on trips
and station availability are encoded in
seven dimensions: space, time, bike
and dock availability, rate of new rides
per minute, and whether unavailability
at a given time of day occurred mul-
tiple times. I used the metaphor of
unavailability as dandelions among
flowers that riders travel through each
spring, weeds that need fixing and a
request: by riding against the flow—
redistributing bikes—those riders are
helping us all.

The infographic adds, as its title, a call to action: Ride Against the
Flow10. When encoding custom graphics, basic math can come in 10 Scott Spencer, “Ride Against the

Flow,” 2019, longlisted Kantar Informa-
tion is Beautiful Awards.

handy. The encodings (colored line segments) for empty and full
docking stations at each station were created by mapping the hour of
a day to the angle in degrees/radians of a unit circle, and calculating
the end of the line segments as an offset from the docking station
geolocation using basic trigonometry,
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